Metamath Proof Explorer


Theorem fpm

Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 31-Dec-2013)

Ref Expression
Hypotheses elmap.1 A V
elmap.2 B V
Assertion fpm F : A B F B 𝑝𝑚 A

Proof

Step Hyp Ref Expression
1 elmap.1 A V
2 elmap.2 B V
3 fpmg A V B V F : A B F B 𝑝𝑚 A
4 1 2 3 mp3an12 F : A B F B 𝑝𝑚 A