Metamath Proof Explorer


Theorem fpmd

Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fpmd.a φ A V
fpmd.b φ B W
fpmd.c φ C A
fpmd.f φ F : C B
Assertion fpmd φ F B 𝑝𝑚 A

Proof

Step Hyp Ref Expression
1 fpmd.a φ A V
2 fpmd.b φ B W
3 fpmd.c φ C A
4 fpmd.f φ F : C B
5 elpm2r B W A V F : C B C A F B 𝑝𝑚 A
6 2 1 4 3 5 syl22anc φ F B 𝑝𝑚 A