Metamath Proof Explorer


Theorem fpr

Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses fpr.1 A V
fpr.2 B V
fpr.3 C V
fpr.4 D V
Assertion fpr A B A C B D : A B C D

Proof

Step Hyp Ref Expression
1 fpr.1 A V
2 fpr.2 B V
3 fpr.3 C V
4 fpr.4 D V
5 1 2 3 4 funpr A B Fun A C B D
6 3 4 dmprop dom A C B D = A B
7 df-fn A C B D Fn A B Fun A C B D dom A C B D = A B
8 5 6 7 sylanblrc A B A C B D Fn A B
9 df-pr A C B D = A C B D
10 9 rneqi ran A C B D = ran A C B D
11 rnun ran A C B D = ran A C ran B D
12 1 rnsnop ran A C = C
13 2 rnsnop ran B D = D
14 12 13 uneq12i ran A C ran B D = C D
15 df-pr C D = C D
16 14 15 eqtr4i ran A C ran B D = C D
17 10 11 16 3eqtri ran A C B D = C D
18 17 eqimssi ran A C B D C D
19 df-f A C B D : A B C D A C B D Fn A B ran A C B D C D
20 8 18 19 sylanblrc A B A C B D : A B C D