Metamath Proof Explorer


Theorem fpr2g

Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Assertion fpr2g A V B W F : A B C F A C F B C F = A F A B F B

Proof

Step Hyp Ref Expression
1 simpr A V B W F : A B C F : A B C
2 prid1g A V A A B
3 2 ad2antrr A V B W F : A B C A A B
4 1 3 ffvelrnd A V B W F : A B C F A C
5 prid2g B W B A B
6 5 ad2antlr A V B W F : A B C B A B
7 1 6 ffvelrnd A V B W F : A B C F B C
8 ffn F : A B C F Fn A B
9 8 adantl A V B W F : A B C F Fn A B
10 fnpr2g A V B W F Fn A B F = A F A B F B
11 10 adantr A V B W F : A B C F Fn A B F = A F A B F B
12 9 11 mpbid A V B W F : A B C F = A F A B F B
13 4 7 12 3jca A V B W F : A B C F A C F B C F = A F A B F B
14 10 biimpar A V B W F = A F A B F B F Fn A B
15 14 3ad2antr3 A V B W F A C F B C F = A F A B F B F Fn A B
16 simpr3 A V B W F A C F B C F = A F A B F B F = A F A B F B
17 2 ad2antrr A V B W F A C F B C F = A F A B F B A A B
18 simpr1 A V B W F A C F B C F = A F A B F B F A C
19 17 18 opelxpd A V B W F A C F B C F = A F A B F B A F A A B × C
20 5 ad2antlr A V B W F A C F B C F = A F A B F B B A B
21 simpr2 A V B W F A C F B C F = A F A B F B F B C
22 20 21 opelxpd A V B W F A C F B C F = A F A B F B B F B A B × C
23 19 22 prssd A V B W F A C F B C F = A F A B F B A F A B F B A B × C
24 16 23 eqsstrd A V B W F A C F B C F = A F A B F B F A B × C
25 dff2 F : A B C F Fn A B F A B × C
26 15 24 25 sylanbrc A V B W F A C F B C F = A F A B F B F : A B C
27 13 26 impbida A V B W F : A B C F A C F B C F = A F A B F B