| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 |  | prid1g |  | 
						
							| 3 | 2 | ad2antrr |  | 
						
							| 4 | 1 3 | ffvelcdmd |  | 
						
							| 5 |  | prid2g |  | 
						
							| 6 | 5 | ad2antlr |  | 
						
							| 7 | 1 6 | ffvelcdmd |  | 
						
							| 8 |  | ffn |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 |  | fnpr2g |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 9 11 | mpbid |  | 
						
							| 13 | 4 7 12 | 3jca |  | 
						
							| 14 | 10 | biimpar |  | 
						
							| 15 | 14 | 3ad2antr3 |  | 
						
							| 16 |  | simpr3 |  | 
						
							| 17 | 2 | ad2antrr |  | 
						
							| 18 |  | simpr1 |  | 
						
							| 19 | 17 18 | opelxpd |  | 
						
							| 20 | 5 | ad2antlr |  | 
						
							| 21 |  | simpr2 |  | 
						
							| 22 | 20 21 | opelxpd |  | 
						
							| 23 | 19 22 | prssd |  | 
						
							| 24 | 16 23 | eqsstrd |  | 
						
							| 25 |  | dff2 |  | 
						
							| 26 | 15 24 25 | sylanbrc |  | 
						
							| 27 | 13 26 | impbida |  |