Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
prid1g |
|
3 |
2
|
ad2antrr |
|
4 |
1 3
|
ffvelrnd |
|
5 |
|
prid2g |
|
6 |
5
|
ad2antlr |
|
7 |
1 6
|
ffvelrnd |
|
8 |
|
ffn |
|
9 |
8
|
adantl |
|
10 |
|
fnpr2g |
|
11 |
10
|
adantr |
|
12 |
9 11
|
mpbid |
|
13 |
4 7 12
|
3jca |
|
14 |
10
|
biimpar |
|
15 |
14
|
3ad2antr3 |
|
16 |
|
simpr3 |
|
17 |
2
|
ad2antrr |
|
18 |
|
simpr1 |
|
19 |
17 18
|
opelxpd |
|
20 |
5
|
ad2antlr |
|
21 |
|
simpr2 |
|
22 |
20 21
|
opelxpd |
|
23 |
19 22
|
prssd |
|
24 |
16 23
|
eqsstrd |
|
25 |
|
dff2 |
|
26 |
15 24 25
|
sylanbrc |
|
27 |
13 26
|
impbida |
|