| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprlem.1 |
|
| 2 |
|
fprlem.2 |
|
| 3 |
|
vex |
|
| 4 |
|
vex |
|
| 5 |
3 4
|
breldm |
|
| 6 |
|
vex |
|
| 7 |
3 6
|
breldm |
|
| 8 |
|
elin |
|
| 9 |
8
|
biimpri |
|
| 10 |
5 7 9
|
syl2an |
|
| 11 |
|
id |
|
| 12 |
4
|
brresi |
|
| 13 |
6
|
brresi |
|
| 14 |
12 13
|
anbi12i |
|
| 15 |
|
an4 |
|
| 16 |
14 15
|
bitri |
|
| 17 |
10 10 11 16
|
syl21anbrc |
|
| 18 |
|
inss2 |
|
| 19 |
1
|
frrlem3 |
|
| 20 |
18 19
|
sstrid |
|
| 21 |
20
|
adantl |
|
| 22 |
21
|
adantl |
|
| 23 |
|
simpl1 |
|
| 24 |
|
frss |
|
| 25 |
22 23 24
|
sylc |
|
| 26 |
|
simpl2 |
|
| 27 |
|
poss |
|
| 28 |
22 26 27
|
sylc |
|
| 29 |
|
simpl3 |
|
| 30 |
|
sess2 |
|
| 31 |
22 29 30
|
sylc |
|
| 32 |
1
|
frrlem4 |
|
| 33 |
32
|
adantl |
|
| 34 |
1
|
frrlem4 |
|
| 35 |
|
incom |
|
| 36 |
35
|
reseq2i |
|
| 37 |
|
fneq12 |
|
| 38 |
36 35 37
|
mp2an |
|
| 39 |
36
|
fveq1i |
|
| 40 |
|
predeq2 |
|
| 41 |
35 40
|
ax-mp |
|
| 42 |
36 41
|
reseq12i |
|
| 43 |
42
|
oveq2i |
|
| 44 |
39 43
|
eqeq12i |
|
| 45 |
35 44
|
raleqbii |
|
| 46 |
38 45
|
anbi12i |
|
| 47 |
34 46
|
sylibr |
|
| 48 |
47
|
ancoms |
|
| 49 |
48
|
adantl |
|
| 50 |
|
fpr3g |
|
| 51 |
25 28 31 33 49 50
|
syl311anc |
|
| 52 |
51
|
breqd |
|
| 53 |
52
|
biimprd |
|
| 54 |
1
|
frrlem2 |
|
| 55 |
54
|
ad2antrl |
|
| 56 |
|
funres |
|
| 57 |
|
dffun2 |
|
| 58 |
|
2sp |
|
| 59 |
58
|
sps |
|
| 60 |
57 59
|
simplbiim |
|
| 61 |
55 56 60
|
3syl |
|
| 62 |
53 61
|
sylan2d |
|
| 63 |
17 62
|
syl5 |
|