Step |
Hyp |
Ref |
Expression |
1 |
|
fprod.1 |
|
2 |
|
fprod.2 |
|
3 |
|
fprod.3 |
|
4 |
|
fprod.4 |
|
5 |
|
fprod.5 |
|
6 |
|
df-prod |
|
7 |
|
fvex |
|
8 |
|
nfcv |
|
9 |
|
nfv |
|
10 |
|
nfcsb1v |
|
11 |
|
nfcv |
|
12 |
9 10 11
|
nfif |
|
13 |
|
eleq1w |
|
14 |
|
csbeq1a |
|
15 |
13 14
|
ifbieq1d |
|
16 |
8 12 15
|
cbvmpt |
|
17 |
4
|
ralrimiva |
|
18 |
10
|
nfel1 |
|
19 |
14
|
eleq1d |
|
20 |
18 19
|
rspc |
|
21 |
17 20
|
mpan9 |
|
22 |
|
fveq2 |
|
23 |
22
|
csbeq1d |
|
24 |
|
csbcow |
|
25 |
23 24
|
eqtr4di |
|
26 |
25
|
cbvmptv |
|
27 |
16 21 26
|
prodmo |
|
28 |
|
f1of |
|
29 |
3 28
|
syl |
|
30 |
|
ovex |
|
31 |
|
fex |
|
32 |
29 30 31
|
sylancl |
|
33 |
|
nnuz |
|
34 |
2 33
|
eleqtrdi |
|
35 |
|
elfznn |
|
36 |
|
fvex |
|
37 |
5 36
|
eqeltrrdi |
|
38 |
|
eqid |
|
39 |
38
|
fvmpt2 |
|
40 |
35 37 39
|
syl2an2 |
|
41 |
5 40
|
eqtr4d |
|
42 |
41
|
ralrimiva |
|
43 |
|
nffvmpt1 |
|
44 |
43
|
nfeq2 |
|
45 |
|
fveq2 |
|
46 |
|
fveq2 |
|
47 |
45 46
|
eqeq12d |
|
48 |
44 47
|
rspc |
|
49 |
42 48
|
mpan9 |
|
50 |
34 49
|
seqfveq |
|
51 |
3 50
|
jca |
|
52 |
|
f1oeq1 |
|
53 |
|
fveq1 |
|
54 |
53
|
csbeq1d |
|
55 |
|
fvex |
|
56 |
55 1
|
csbie |
|
57 |
54 56
|
eqtrdi |
|
58 |
57
|
mpteq2dv |
|
59 |
58
|
seqeq3d |
|
60 |
59
|
fveq1d |
|
61 |
60
|
eqeq2d |
|
62 |
52 61
|
anbi12d |
|
63 |
32 51 62
|
spcedv |
|
64 |
|
oveq2 |
|
65 |
64
|
f1oeq2d |
|
66 |
|
fveq2 |
|
67 |
66
|
eqeq2d |
|
68 |
65 67
|
anbi12d |
|
69 |
68
|
exbidv |
|
70 |
69
|
rspcev |
|
71 |
2 63 70
|
syl2anc |
|
72 |
71
|
olcd |
|
73 |
|
breq2 |
|
74 |
73
|
3anbi3d |
|
75 |
74
|
rexbidv |
|
76 |
|
eqeq1 |
|
77 |
76
|
anbi2d |
|
78 |
77
|
exbidv |
|
79 |
78
|
rexbidv |
|
80 |
75 79
|
orbi12d |
|
81 |
80
|
moi2 |
|
82 |
7 81
|
mpanl1 |
|
83 |
82
|
ancom2s |
|
84 |
83
|
expr |
|
85 |
27 72 84
|
syl2anc |
|
86 |
72 80
|
syl5ibrcom |
|
87 |
85 86
|
impbid |
|
88 |
87
|
adantr |
|
89 |
88
|
iota5 |
|
90 |
7 89
|
mpan2 |
|
91 |
6 90
|
eqtrid |
|