Metamath Proof Explorer


Theorem fprod0

Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprod0.kph k φ
fprod0.kc _ k C
fprod0.a φ A Fin
fprod0.b φ k A B
fprod0.bc k = K B = C
fprod0.k φ K A
fprod0.c φ C = 0
Assertion fprod0 φ k A B = 0

Proof

Step Hyp Ref Expression
1 fprod0.kph k φ
2 fprod0.kc _ k C
3 fprod0.a φ A Fin
4 fprod0.b φ k A B
5 fprod0.bc k = K B = C
6 fprod0.k φ K A
7 fprod0.c φ C = 0
8 2 a1i φ _ k C
9 5 adantl φ k = K B = C
10 1 8 3 4 6 9 fprodsplit1f φ k A B = C k A K B
11 7 oveq1d φ C k A K B = 0 k A K B
12 diffi A Fin A K Fin
13 3 12 syl φ A K Fin
14 simpl φ k A K φ
15 eldifi k A K k A
16 15 adantl φ k A K k A
17 14 16 4 syl2anc φ k A K B
18 1 13 17 fprodclf φ k A K B
19 18 mul02d φ 0 k A K B = 0
20 10 11 19 3eqtrd φ k A B = 0