| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprod0.kph |  | 
						
							| 2 |  | fprod0.kc |  | 
						
							| 3 |  | fprod0.a |  | 
						
							| 4 |  | fprod0.b |  | 
						
							| 5 |  | fprod0.bc |  | 
						
							| 6 |  | fprod0.k |  | 
						
							| 7 |  | fprod0.c |  | 
						
							| 8 | 2 | a1i |  | 
						
							| 9 | 5 | adantl |  | 
						
							| 10 | 1 8 3 4 6 9 | fprodsplit1f |  | 
						
							| 11 | 7 | oveq1d |  | 
						
							| 12 |  | diffi |  | 
						
							| 13 | 3 12 | syl |  | 
						
							| 14 |  | simpl |  | 
						
							| 15 |  | eldifi |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 14 16 4 | syl2anc |  | 
						
							| 18 | 1 13 17 | fprodclf |  | 
						
							| 19 | 18 | mul02d |  | 
						
							| 20 | 10 11 19 | 3eqtrd |  |