Metamath Proof Explorer


Theorem fprod0diag

Description: Two ways to express "the product of A ( j , k ) over the triangular region M <_ j , M <_ k , j + k <_ N . Compare fsum0diag . (Contributed by Scott Fenton, 2-Feb-2018)

Ref Expression
Hypothesis fprod0diag.1 φ j 0 N k 0 N j A
Assertion fprod0diag φ j = 0 N k = 0 N j A = k = 0 N j = 0 N k A

Proof

Step Hyp Ref Expression
1 fprod0diag.1 φ j 0 N k 0 N j A
2 fzfid φ 0 N Fin
3 fzfid φ j 0 N 0 N j Fin
4 fsum0diaglem j 0 N k 0 N j k 0 N j 0 N k
5 fsum0diaglem k 0 N j 0 N k j 0 N k 0 N j
6 4 5 impbii j 0 N k 0 N j k 0 N j 0 N k
7 6 a1i φ j 0 N k 0 N j k 0 N j 0 N k
8 2 2 3 7 1 fprodcom2 φ j = 0 N k = 0 N j A = k = 0 N j = 0 N k A