Metamath Proof Explorer


Theorem fprod1p

Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)

Ref Expression
Hypotheses fprod1p.1 φ N M
fprod1p.2 φ k M N A
fprod1p.3 k = M A = B
Assertion fprod1p φ k = M N A = B k = M + 1 N A

Proof

Step Hyp Ref Expression
1 fprod1p.1 φ N M
2 fprod1p.2 φ k M N A
3 fprod1p.3 k = M A = B
4 eluzfz1 N M M M N
5 1 4 syl φ M M N
6 5 elfzelzd φ M
7 fzsn M M M = M
8 6 7 syl φ M M = M
9 8 ineq1d φ M M M + 1 N = M M + 1 N
10 6 zred φ M
11 10 ltp1d φ M < M + 1
12 fzdisj M < M + 1 M M M + 1 N =
13 11 12 syl φ M M M + 1 N =
14 9 13 eqtr3d φ M M + 1 N =
15 fzsplit M M N M N = M M M + 1 N
16 5 15 syl φ M N = M M M + 1 N
17 8 uneq1d φ M M M + 1 N = M M + 1 N
18 16 17 eqtrd φ M N = M M + 1 N
19 fzfid φ M N Fin
20 14 18 19 2 fprodsplit φ k = M N A = k M A k = M + 1 N A
21 3 eleq1d k = M A B
22 2 ralrimiva φ k M N A
23 21 22 5 rspcdva φ B
24 3 prodsn M M N B k M A = B
25 5 23 24 syl2anc φ k M A = B
26 25 oveq1d φ k M A k = M + 1 N A = B k = M + 1 N A
27 20 26 eqtrd φ k = M N A = B k = M + 1 N A