Metamath Proof Explorer


Theorem fprod2d

Description: Write a double product as a product over a two-dimensional region. Compare fsum2d . (Contributed by Scott Fenton, 30-Jan-2018)

Ref Expression
Hypotheses fprod2d.1 z = j k D = C
fprod2d.2 φ A Fin
fprod2d.3 φ j A B Fin
fprod2d.4 φ j A k B C
Assertion fprod2d φ j A k B C = z j A j × B D

Proof

Step Hyp Ref Expression
1 fprod2d.1 z = j k D = C
2 fprod2d.2 φ A Fin
3 fprod2d.3 φ j A B Fin
4 fprod2d.4 φ j A k B C
5 ssid A A
6 sseq1 w = w A A
7 prodeq1 w = j w k B C = j k B C
8 iuneq1 w = j w j × B = j j × B
9 0iun j j × B =
10 8 9 eqtrdi w = j w j × B =
11 10 prodeq1d w = z j w j × B D = z D
12 7 11 eqeq12d w = j w k B C = z j w j × B D j k B C = z D
13 6 12 imbi12d w = w A j w k B C = z j w j × B D A j k B C = z D
14 13 imbi2d w = φ w A j w k B C = z j w j × B D φ A j k B C = z D
15 sseq1 w = x w A x A
16 prodeq1 w = x j w k B C = j x k B C
17 iuneq1 w = x j w j × B = j x j × B
18 17 prodeq1d w = x z j w j × B D = z j x j × B D
19 16 18 eqeq12d w = x j w k B C = z j w j × B D j x k B C = z j x j × B D
20 15 19 imbi12d w = x w A j w k B C = z j w j × B D x A j x k B C = z j x j × B D
21 20 imbi2d w = x φ w A j w k B C = z j w j × B D φ x A j x k B C = z j x j × B D
22 sseq1 w = x y w A x y A
23 prodeq1 w = x y j w k B C = j x y k B C
24 iuneq1 w = x y j w j × B = j x y j × B
25 24 prodeq1d w = x y z j w j × B D = z j x y j × B D
26 23 25 eqeq12d w = x y j w k B C = z j w j × B D j x y k B C = z j x y j × B D
27 22 26 imbi12d w = x y w A j w k B C = z j w j × B D x y A j x y k B C = z j x y j × B D
28 27 imbi2d w = x y φ w A j w k B C = z j w j × B D φ x y A j x y k B C = z j x y j × B D
29 sseq1 w = A w A A A
30 prodeq1 w = A j w k B C = j A k B C
31 iuneq1 w = A j w j × B = j A j × B
32 31 prodeq1d w = A z j w j × B D = z j A j × B D
33 30 32 eqeq12d w = A j w k B C = z j w j × B D j A k B C = z j A j × B D
34 29 33 imbi12d w = A w A j w k B C = z j w j × B D A A j A k B C = z j A j × B D
35 34 imbi2d w = A φ w A j w k B C = z j w j × B D φ A A j A k B C = z j A j × B D
36 prod0 j k B C = 1
37 prod0 z D = 1
38 36 37 eqtr4i j k B C = z D
39 38 2a1i φ A j k B C = z D
40 ssun1 x x y
41 sstr x x y x y A x A
42 40 41 mpan x y A x A
43 42 imim1i x A j x k B C = z j x j × B D x y A j x k B C = z j x j × B D
44 2 ad2antrr φ ¬ y x x y A A Fin
45 3 ad4ant14 φ ¬ y x x y A j A B Fin
46 4 ad4ant14 φ ¬ y x x y A j A k B C
47 simplr φ ¬ y x x y A ¬ y x
48 simpr φ ¬ y x x y A x y A
49 biid j x k B C = z j x j × B D j x k B C = z j x j × B D
50 1 44 45 46 47 48 49 fprod2dlem φ ¬ y x x y A j x k B C = z j x j × B D j x y k B C = z j x y j × B D
51 50 exp31 φ ¬ y x x y A j x k B C = z j x j × B D j x y k B C = z j x y j × B D
52 51 a2d φ ¬ y x x y A j x k B C = z j x j × B D x y A j x y k B C = z j x y j × B D
53 43 52 syl5 φ ¬ y x x A j x k B C = z j x j × B D x y A j x y k B C = z j x y j × B D
54 53 expcom ¬ y x φ x A j x k B C = z j x j × B D x y A j x y k B C = z j x y j × B D
55 54 a2d ¬ y x φ x A j x k B C = z j x j × B D φ x y A j x y k B C = z j x y j × B D
56 55 adantl x Fin ¬ y x φ x A j x k B C = z j x j × B D φ x y A j x y k B C = z j x y j × B D
57 14 21 28 35 39 56 findcard2s A Fin φ A A j A k B C = z j A j × B D
58 2 57 mpcom φ A A j A k B C = z j A j × B D
59 5 58 mpi φ j A k B C = z j A j × B D