Step |
Hyp |
Ref |
Expression |
1 |
|
fprod2d.1 |
|
2 |
|
fprod2d.2 |
|
3 |
|
fprod2d.3 |
|
4 |
|
fprod2d.4 |
|
5 |
|
fprod2d.5 |
|
6 |
|
fprod2d.6 |
|
7 |
|
fprod2d.7 |
|
8 |
|
simpr |
|
9 |
8 7
|
sylib |
|
10 |
|
nfcv |
|
11 |
|
nfcsb1v |
|
12 |
|
nfcsb1v |
|
13 |
11 12
|
nfcprod |
|
14 |
|
csbeq1a |
|
15 |
|
csbeq1a |
|
16 |
15
|
adantr |
|
17 |
14 16
|
prodeq12dv |
|
18 |
10 13 17
|
cbvprodi |
|
19 |
6
|
unssbd |
|
20 |
|
vex |
|
21 |
20
|
snss |
|
22 |
19 21
|
sylibr |
|
23 |
3
|
ralrimiva |
|
24 |
|
nfcsb1v |
|
25 |
24
|
nfel1 |
|
26 |
|
csbeq1a |
|
27 |
26
|
eleq1d |
|
28 |
25 27
|
rspc |
|
29 |
22 23 28
|
sylc |
|
30 |
4
|
ralrimivva |
|
31 |
|
nfcsb1v |
|
32 |
31
|
nfel1 |
|
33 |
24 32
|
nfralw |
|
34 |
|
csbeq1a |
|
35 |
34
|
eleq1d |
|
36 |
26 35
|
raleqbidv |
|
37 |
33 36
|
rspc |
|
38 |
22 30 37
|
sylc |
|
39 |
38
|
r19.21bi |
|
40 |
29 39
|
fprodcl |
|
41 |
|
csbeq1 |
|
42 |
|
csbeq1 |
|
43 |
42
|
adantr |
|
44 |
41 43
|
prodeq12dv |
|
45 |
44
|
prodsn |
|
46 |
22 40 45
|
syl2anc |
|
47 |
|
nfcv |
|
48 |
|
nfcsb1v |
|
49 |
|
csbeq1a |
|
50 |
47 48 49
|
cbvprodi |
|
51 |
|
csbeq1 |
|
52 |
|
snfi |
|
53 |
|
xpfi |
|
54 |
52 29 53
|
sylancr |
|
55 |
|
2ndconst |
|
56 |
22 55
|
syl |
|
57 |
|
fvres |
|
58 |
57
|
adantl |
|
59 |
48
|
nfel1 |
|
60 |
49
|
eleq1d |
|
61 |
59 60
|
rspc |
|
62 |
38 61
|
mpan9 |
|
63 |
51 54 56 58 62
|
fprodf1o |
|
64 |
|
elxp |
|
65 |
|
nfv |
|
66 |
|
nfv |
|
67 |
24
|
nfcri |
|
68 |
66 67
|
nfan |
|
69 |
65 68
|
nfan |
|
70 |
69
|
nfex |
|
71 |
|
nfv |
|
72 |
|
opeq1 |
|
73 |
72
|
eqeq2d |
|
74 |
|
eleq1w |
|
75 |
|
velsn |
|
76 |
74 75
|
bitrdi |
|
77 |
76
|
anbi1d |
|
78 |
26
|
eleq2d |
|
79 |
78
|
pm5.32i |
|
80 |
77 79
|
bitr4di |
|
81 |
73 80
|
anbi12d |
|
82 |
81
|
exbidv |
|
83 |
70 71 82
|
cbvexv1 |
|
84 |
64 83
|
bitri |
|
85 |
|
nfv |
|
86 |
|
nfcv |
|
87 |
86 31
|
nfcsbw |
|
88 |
87
|
nfeq2 |
|
89 |
|
nfv |
|
90 |
|
nfcsb1v |
|
91 |
90
|
nfeq2 |
|
92 |
1
|
ad2antlr |
|
93 |
34
|
ad2antrl |
|
94 |
|
fveq2 |
|
95 |
|
vex |
|
96 |
|
vex |
|
97 |
95 96
|
op2nd |
|
98 |
94 97
|
eqtr2di |
|
99 |
98
|
ad2antlr |
|
100 |
|
csbeq1a |
|
101 |
99 100
|
syl |
|
102 |
92 93 101
|
3eqtrd |
|
103 |
102
|
expl |
|
104 |
89 91 103
|
exlimd |
|
105 |
85 88 104
|
exlimd |
|
106 |
84 105
|
syl5bi |
|
107 |
106
|
imp |
|
108 |
107
|
prodeq2dv |
|
109 |
63 108
|
eqtr4d |
|
110 |
50 109
|
eqtrid |
|
111 |
46 110
|
eqtrd |
|
112 |
18 111
|
eqtrid |
|
113 |
112
|
adantr |
|
114 |
9 113
|
oveq12d |
|
115 |
|
disjsn |
|
116 |
5 115
|
sylibr |
|
117 |
|
eqidd |
|
118 |
2 6
|
ssfid |
|
119 |
6
|
sselda |
|
120 |
4
|
anassrs |
|
121 |
3 120
|
fprodcl |
|
122 |
119 121
|
syldan |
|
123 |
116 117 118 122
|
fprodsplit |
|
124 |
123
|
adantr |
|
125 |
|
eliun |
|
126 |
|
xp1st |
|
127 |
|
elsni |
|
128 |
126 127
|
syl |
|
129 |
128
|
eleq1d |
|
130 |
129
|
biimparc |
|
131 |
130
|
rexlimiva |
|
132 |
125 131
|
sylbi |
|
133 |
|
xp1st |
|
134 |
132 133
|
anim12i |
|
135 |
|
elin |
|
136 |
|
elin |
|
137 |
134 135 136
|
3imtr4i |
|
138 |
116
|
eleq2d |
|
139 |
|
noel |
|
140 |
139
|
pm2.21i |
|
141 |
138 140
|
syl6bi |
|
142 |
137 141
|
syl5 |
|
143 |
142
|
ssrdv |
|
144 |
|
ss0 |
|
145 |
143 144
|
syl |
|
146 |
|
iunxun |
|
147 |
|
nfcv |
|
148 |
|
nfcv |
|
149 |
148 11
|
nfxp |
|
150 |
|
sneq |
|
151 |
150 14
|
xpeq12d |
|
152 |
147 149 151
|
cbviun |
|
153 |
|
sneq |
|
154 |
153 41
|
xpeq12d |
|
155 |
20 154
|
iunxsn |
|
156 |
152 155
|
eqtri |
|
157 |
156
|
uneq2i |
|
158 |
146 157
|
eqtri |
|
159 |
158
|
a1i |
|
160 |
|
snfi |
|
161 |
119 3
|
syldan |
|
162 |
|
xpfi |
|
163 |
160 161 162
|
sylancr |
|
164 |
163
|
ralrimiva |
|
165 |
|
iunfi |
|
166 |
118 164 165
|
syl2anc |
|
167 |
|
eliun |
|
168 |
|
elxp |
|
169 |
|
simprl |
|
170 |
|
simprrl |
|
171 |
|
elsni |
|
172 |
170 171
|
syl |
|
173 |
172
|
opeq1d |
|
174 |
169 173
|
eqtrd |
|
175 |
174 1
|
syl |
|
176 |
|
simpll |
|
177 |
119
|
adantr |
|
178 |
|
simprrr |
|
179 |
176 177 178 4
|
syl12anc |
|
180 |
175 179
|
eqeltrd |
|
181 |
180
|
ex |
|
182 |
181
|
exlimdvv |
|
183 |
168 182
|
syl5bi |
|
184 |
183
|
rexlimdva |
|
185 |
167 184
|
syl5bi |
|
186 |
185
|
imp |
|
187 |
145 159 166 186
|
fprodsplit |
|
188 |
187
|
adantr |
|
189 |
114 124 188
|
3eqtr4d |
|