Step |
Hyp |
Ref |
Expression |
1 |
|
fprodabs.1 |
|
2 |
|
fprodabs.2 |
|
3 |
|
fprodabs.3 |
|
4 |
2 1
|
eleqtrdi |
|
5 |
|
oveq2 |
|
6 |
5
|
prodeq1d |
|
7 |
6
|
fveq2d |
|
8 |
5
|
prodeq1d |
|
9 |
7 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
11
|
prodeq1d |
|
13 |
12
|
fveq2d |
|
14 |
11
|
prodeq1d |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
oveq2 |
|
18 |
17
|
prodeq1d |
|
19 |
18
|
fveq2d |
|
20 |
17
|
prodeq1d |
|
21 |
19 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
oveq2 |
|
24 |
23
|
prodeq1d |
|
25 |
24
|
fveq2d |
|
26 |
23
|
prodeq1d |
|
27 |
25 26
|
eqeq12d |
|
28 |
27
|
imbi2d |
|
29 |
|
csbfv2g |
|
30 |
29
|
adantl |
|
31 |
|
fzsn |
|
32 |
31
|
adantl |
|
33 |
32
|
prodeq1d |
|
34 |
|
simpr |
|
35 |
|
uzid |
|
36 |
35 1
|
eleqtrrdi |
|
37 |
3
|
ralrimiva |
|
38 |
|
nfcsb1v |
|
39 |
38
|
nfel1 |
|
40 |
|
csbeq1a |
|
41 |
40
|
eleq1d |
|
42 |
39 41
|
rspc |
|
43 |
37 42
|
mpan9 |
|
44 |
36 43
|
sylan2 |
|
45 |
44
|
abscld |
|
46 |
45
|
recnd |
|
47 |
30 46
|
eqeltrd |
|
48 |
|
prodsns |
|
49 |
34 47 48
|
syl2anc |
|
50 |
33 49
|
eqtrd |
|
51 |
31
|
prodeq1d |
|
52 |
51
|
adantl |
|
53 |
|
prodsns |
|
54 |
34 44 53
|
syl2anc |
|
55 |
52 54
|
eqtrd |
|
56 |
55
|
fveq2d |
|
57 |
30 50 56
|
3eqtr4rd |
|
58 |
57
|
expcom |
|
59 |
|
simp3 |
|
60 |
|
ovex |
|
61 |
|
csbfv2g |
|
62 |
60 61
|
ax-mp |
|
63 |
62
|
eqcomi |
|
64 |
63
|
a1i |
|
65 |
59 64
|
oveq12d |
|
66 |
|
simpr |
|
67 |
|
elfzuz |
|
68 |
67 1
|
eleqtrrdi |
|
69 |
68 3
|
sylan2 |
|
70 |
69
|
adantlr |
|
71 |
66 70
|
fprodp1s |
|
72 |
71
|
fveq2d |
|
73 |
|
fzfid |
|
74 |
|
elfzuz |
|
75 |
74 1
|
eleqtrrdi |
|
76 |
75 3
|
sylan2 |
|
77 |
76
|
adantlr |
|
78 |
73 77
|
fprodcl |
|
79 |
|
peano2uz |
|
80 |
79 1
|
eleqtrrdi |
|
81 |
|
nfcsb1v |
|
82 |
81
|
nfel1 |
|
83 |
|
csbeq1a |
|
84 |
83
|
eleq1d |
|
85 |
82 84
|
rspc |
|
86 |
37 85
|
mpan9 |
|
87 |
80 86
|
sylan2 |
|
88 |
78 87
|
absmuld |
|
89 |
72 88
|
eqtrd |
|
90 |
89
|
3adant3 |
|
91 |
70
|
abscld |
|
92 |
91
|
recnd |
|
93 |
66 92
|
fprodp1s |
|
94 |
93
|
3adant3 |
|
95 |
65 90 94
|
3eqtr4d |
|
96 |
95
|
3exp |
|
97 |
96
|
com12 |
|
98 |
97
|
a2d |
|
99 |
10 16 22 28 58 98
|
uzind4 |
|
100 |
4 99
|
mpcom |
|