Metamath Proof Explorer


Theorem fprodabs

Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017)

Ref Expression
Hypotheses fprodabs.1 Z = M
fprodabs.2 φ N Z
fprodabs.3 φ k Z A
Assertion fprodabs φ k = M N A = k = M N A

Proof

Step Hyp Ref Expression
1 fprodabs.1 Z = M
2 fprodabs.2 φ N Z
3 fprodabs.3 φ k Z A
4 2 1 eleqtrdi φ N M
5 oveq2 a = M M a = M M
6 5 prodeq1d a = M k = M a A = k = M M A
7 6 fveq2d a = M k = M a A = k = M M A
8 5 prodeq1d a = M k = M a A = k = M M A
9 7 8 eqeq12d a = M k = M a A = k = M a A k = M M A = k = M M A
10 9 imbi2d a = M φ k = M a A = k = M a A φ k = M M A = k = M M A
11 oveq2 a = n M a = M n
12 11 prodeq1d a = n k = M a A = k = M n A
13 12 fveq2d a = n k = M a A = k = M n A
14 11 prodeq1d a = n k = M a A = k = M n A
15 13 14 eqeq12d a = n k = M a A = k = M a A k = M n A = k = M n A
16 15 imbi2d a = n φ k = M a A = k = M a A φ k = M n A = k = M n A
17 oveq2 a = n + 1 M a = M n + 1
18 17 prodeq1d a = n + 1 k = M a A = k = M n + 1 A
19 18 fveq2d a = n + 1 k = M a A = k = M n + 1 A
20 17 prodeq1d a = n + 1 k = M a A = k = M n + 1 A
21 19 20 eqeq12d a = n + 1 k = M a A = k = M a A k = M n + 1 A = k = M n + 1 A
22 21 imbi2d a = n + 1 φ k = M a A = k = M a A φ k = M n + 1 A = k = M n + 1 A
23 oveq2 a = N M a = M N
24 23 prodeq1d a = N k = M a A = k = M N A
25 24 fveq2d a = N k = M a A = k = M N A
26 23 prodeq1d a = N k = M a A = k = M N A
27 25 26 eqeq12d a = N k = M a A = k = M a A k = M N A = k = M N A
28 27 imbi2d a = N φ k = M a A = k = M a A φ k = M N A = k = M N A
29 csbfv2g M M / k A = M / k A
30 29 adantl φ M M / k A = M / k A
31 fzsn M M M = M
32 31 adantl φ M M M = M
33 32 prodeq1d φ M k = M M A = k M A
34 simpr φ M M
35 uzid M M M
36 35 1 eleqtrrdi M M Z
37 3 ralrimiva φ k Z A
38 nfcsb1v _ k M / k A
39 38 nfel1 k M / k A
40 csbeq1a k = M A = M / k A
41 40 eleq1d k = M A M / k A
42 39 41 rspc M Z k Z A M / k A
43 37 42 mpan9 φ M Z M / k A
44 36 43 sylan2 φ M M / k A
45 44 abscld φ M M / k A
46 45 recnd φ M M / k A
47 30 46 eqeltrd φ M M / k A
48 prodsns M M / k A k M A = M / k A
49 34 47 48 syl2anc φ M k M A = M / k A
50 33 49 eqtrd φ M k = M M A = M / k A
51 31 prodeq1d M k = M M A = k M A
52 51 adantl φ M k = M M A = k M A
53 prodsns M M / k A k M A = M / k A
54 34 44 53 syl2anc φ M k M A = M / k A
55 52 54 eqtrd φ M k = M M A = M / k A
56 55 fveq2d φ M k = M M A = M / k A
57 30 50 56 3eqtr4rd φ M k = M M A = k = M M A
58 57 expcom M φ k = M M A = k = M M A
59 simp3 φ n M k = M n A = k = M n A k = M n A = k = M n A
60 ovex n + 1 V
61 csbfv2g n + 1 V n + 1 / k A = n + 1 / k A
62 60 61 ax-mp n + 1 / k A = n + 1 / k A
63 62 eqcomi n + 1 / k A = n + 1 / k A
64 63 a1i φ n M k = M n A = k = M n A n + 1 / k A = n + 1 / k A
65 59 64 oveq12d φ n M k = M n A = k = M n A k = M n A n + 1 / k A = k = M n A n + 1 / k A
66 simpr φ n M n M
67 elfzuz k M n + 1 k M
68 67 1 eleqtrrdi k M n + 1 k Z
69 68 3 sylan2 φ k M n + 1 A
70 69 adantlr φ n M k M n + 1 A
71 66 70 fprodp1s φ n M k = M n + 1 A = k = M n A n + 1 / k A
72 71 fveq2d φ n M k = M n + 1 A = k = M n A n + 1 / k A
73 fzfid φ n M M n Fin
74 elfzuz k M n k M
75 74 1 eleqtrrdi k M n k Z
76 75 3 sylan2 φ k M n A
77 76 adantlr φ n M k M n A
78 73 77 fprodcl φ n M k = M n A
79 peano2uz n M n + 1 M
80 79 1 eleqtrrdi n M n + 1 Z
81 nfcsb1v _ k n + 1 / k A
82 81 nfel1 k n + 1 / k A
83 csbeq1a k = n + 1 A = n + 1 / k A
84 83 eleq1d k = n + 1 A n + 1 / k A
85 82 84 rspc n + 1 Z k Z A n + 1 / k A
86 37 85 mpan9 φ n + 1 Z n + 1 / k A
87 80 86 sylan2 φ n M n + 1 / k A
88 78 87 absmuld φ n M k = M n A n + 1 / k A = k = M n A n + 1 / k A
89 72 88 eqtrd φ n M k = M n + 1 A = k = M n A n + 1 / k A
90 89 3adant3 φ n M k = M n A = k = M n A k = M n + 1 A = k = M n A n + 1 / k A
91 70 abscld φ n M k M n + 1 A
92 91 recnd φ n M k M n + 1 A
93 66 92 fprodp1s φ n M k = M n + 1 A = k = M n A n + 1 / k A
94 93 3adant3 φ n M k = M n A = k = M n A k = M n + 1 A = k = M n A n + 1 / k A
95 65 90 94 3eqtr4d φ n M k = M n A = k = M n A k = M n + 1 A = k = M n + 1 A
96 95 3exp φ n M k = M n A = k = M n A k = M n + 1 A = k = M n + 1 A
97 96 com12 n M φ k = M n A = k = M n A k = M n + 1 A = k = M n + 1 A
98 97 a2d n M φ k = M n A = k = M n A φ k = M n + 1 A = k = M n + 1 A
99 10 16 22 28 58 98 uzind4 N M φ k = M N A = k = M N A
100 4 99 mpcom φ k = M N A = k = M N A