Step |
Hyp |
Ref |
Expression |
1 |
|
fprodabs2.a |
|
2 |
|
fprodabs2.b |
|
3 |
|
prodeq1 |
|
4 |
3
|
fveq2d |
|
5 |
|
prodeq1 |
|
6 |
4 5
|
eqeq12d |
|
7 |
|
prodeq1 |
|
8 |
7
|
fveq2d |
|
9 |
|
prodeq1 |
|
10 |
8 9
|
eqeq12d |
|
11 |
|
prodeq1 |
|
12 |
11
|
fveq2d |
|
13 |
|
prodeq1 |
|
14 |
12 13
|
eqeq12d |
|
15 |
|
prodeq1 |
|
16 |
15
|
fveq2d |
|
17 |
|
prodeq1 |
|
18 |
16 17
|
eqeq12d |
|
19 |
|
abs1 |
|
20 |
|
prod0 |
|
21 |
20
|
fveq2i |
|
22 |
|
prod0 |
|
23 |
19 21 22
|
3eqtr4i |
|
24 |
23
|
a1i |
|
25 |
|
eqidd |
|
26 |
|
nfv |
|
27 |
|
nfcsb1v |
|
28 |
1
|
adantr |
|
29 |
|
simpr |
|
30 |
|
ssfi |
|
31 |
28 29 30
|
syl2anc |
|
32 |
31
|
adantrr |
|
33 |
|
simprr |
|
34 |
33
|
eldifbd |
|
35 |
|
simpll |
|
36 |
29
|
sselda |
|
37 |
36
|
adantlrr |
|
38 |
35 37 2
|
syl2anc |
|
39 |
|
csbeq1a |
|
40 |
|
simpl |
|
41 |
33
|
eldifad |
|
42 |
|
nfv |
|
43 |
27
|
nfel1 |
|
44 |
42 43
|
nfim |
|
45 |
|
eleq1w |
|
46 |
45
|
anbi2d |
|
47 |
39
|
eleq1d |
|
48 |
46 47
|
imbi12d |
|
49 |
44 48 2
|
chvarfv |
|
50 |
40 41 49
|
syl2anc |
|
51 |
26 27 32 33 34 38 39 50
|
fprodsplitsn |
|
52 |
51
|
adantr |
|
53 |
52
|
fveq2d |
|
54 |
26 32 38
|
fprodclf |
|
55 |
54 50
|
absmuld |
|
56 |
55
|
adantr |
|
57 |
|
oveq1 |
|
58 |
57
|
adantl |
|
59 |
53 56 58
|
3eqtrd |
|
60 |
|
nfcv |
|
61 |
60 27
|
nffv |
|
62 |
38
|
abscld |
|
63 |
62
|
recnd |
|
64 |
39
|
fveq2d |
|
65 |
50
|
abscld |
|
66 |
65
|
recnd |
|
67 |
26 61 32 33 34 63 64 66
|
fprodsplitsn |
|
68 |
67
|
adantr |
|
69 |
25 59 68
|
3eqtr4d |
|
70 |
69
|
ex |
|
71 |
6 10 14 18 24 70 1
|
findcard2d |
|