Metamath Proof Explorer


Theorem fprodaddrecnncnvlem

Description: The sequence S of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodaddrecnncnvlem.k k φ
fprodaddrecnncnvlem.a φ A Fin
fprodaddrecnncnvlem.b φ k A B
fprodaddrecnncnvlem.s S = n k A B + 1 n
fprodaddrecnncnvlem.f F = x k A B + x
fprodaddrecnncnvlem.g G = n 1 n
Assertion fprodaddrecnncnvlem φ S k A B

Proof

Step Hyp Ref Expression
1 fprodaddrecnncnvlem.k k φ
2 fprodaddrecnncnvlem.a φ A Fin
3 fprodaddrecnncnvlem.b φ k A B
4 fprodaddrecnncnvlem.s S = n k A B + 1 n
5 fprodaddrecnncnvlem.f F = x k A B + x
6 fprodaddrecnncnvlem.g G = n 1 n
7 nnuz = 1
8 1zzd φ 1
9 1 2 3 5 fprodadd2cncf φ F : cn
10 1rp 1 +
11 10 a1i n 1 +
12 nnrp n n +
13 11 12 rpdivcld n 1 n +
14 13 rpcnd n 1 n
15 14 adantl φ n 1 n
16 15 6 fmptd φ G :
17 1cnd φ 1
18 divcnv 1 n 1 n 0
19 17 18 syl φ n 1 n 0
20 6 a1i φ G = n 1 n
21 20 breq1d φ G 0 n 1 n 0
22 19 21 mpbird φ G 0
23 0cnd φ 0
24 7 8 9 16 22 23 climcncf φ F G F 0
25 nfv k x
26 1 25 nfan k φ x
27 2 adantr φ x A Fin
28 3 adantlr φ x k A B
29 simplr φ x k A x
30 28 29 addcld φ x k A B + x
31 26 27 30 fprodclf φ x k A B + x
32 31 5 fmptd φ F :
33 fcompt F : G : F G = n F G n
34 32 16 33 syl2anc φ F G = n F G n
35 4 a1i φ S = n k A B + 1 n
36 id n n
37 6 fvmpt2 n 1 n G n = 1 n
38 36 14 37 syl2anc n G n = 1 n
39 38 fveq2d n F G n = F 1 n
40 39 adantl φ n F G n = F 1 n
41 oveq2 x = 1 n B + x = B + 1 n
42 41 prodeq2ad x = 1 n k A B + x = k A B + 1 n
43 prodex k A B + 1 n V
44 43 a1i φ n k A B + 1 n V
45 5 42 15 44 fvmptd3 φ n F 1 n = k A B + 1 n
46 40 45 eqtr2d φ n k A B + 1 n = F G n
47 46 mpteq2dva φ n k A B + 1 n = n F G n
48 35 47 eqtrd φ S = n F G n
49 34 48 eqtr4d φ F G = S
50 5 a1i φ F = x k A B + x
51 nfv k x = 0
52 1 51 nfan k φ x = 0
53 oveq2 x = 0 B + x = B + 0
54 53 ad2antlr φ x = 0 k A B + x = B + 0
55 3 addid1d φ k A B + 0 = B
56 55 adantlr φ x = 0 k A B + 0 = B
57 54 56 eqtrd φ x = 0 k A B + x = B
58 57 ex φ x = 0 k A B + x = B
59 52 58 ralrimi φ x = 0 k A B + x = B
60 59 prodeq2d φ x = 0 k A B + x = k A B
61 prodex k A B V
62 61 a1i φ k A B V
63 50 60 23 62 fvmptd φ F 0 = k A B
64 49 63 breq12d φ F G F 0 S k A B
65 24 64 mpbid φ S k A B