Metamath Proof Explorer


Theorem fprodclf

Description: Closure of a finite product of complex numbers. A version of fprodcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodclf.kph k φ
fprodclf.a φ A Fin
fprodclf.b φ k A B
Assertion fprodclf φ k A B

Proof

Step Hyp Ref Expression
1 fprodclf.kph k φ
2 fprodclf.a φ A Fin
3 fprodclf.b φ k A B
4 ssidd φ
5 mulcl x y x y
6 5 adantl φ x y x y
7 1cnd φ 1
8 1 4 6 2 3 7 fprodcllemf φ k A B