Metamath Proof Explorer


Theorem fprodcnlem

Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodcnlem.1 k φ
fprodcnlem.k K = TopOpen fld
fprodcnlem.j φ J TopOn X
fprodcnlem.a φ A Fin
fprodcnlem.b φ k A x X B J Cn K
fprodcnlem.z φ Z A
fprodcnlem.w φ W A Z
fprodcnlem.p φ x X k Z B J Cn K
Assertion fprodcnlem φ x X k Z W B J Cn K

Proof

Step Hyp Ref Expression
1 fprodcnlem.1 k φ
2 fprodcnlem.k K = TopOpen fld
3 fprodcnlem.j φ J TopOn X
4 fprodcnlem.a φ A Fin
5 fprodcnlem.b φ k A x X B J Cn K
6 fprodcnlem.z φ Z A
7 fprodcnlem.w φ W A Z
8 fprodcnlem.p φ x X k Z B J Cn K
9 nfv k x X
10 1 9 nfan k φ x X
11 nfcsb1v _ k W / k B
12 4 6 ssfid φ Z Fin
13 12 adantr φ x X Z Fin
14 7 adantr φ x X W A Z
15 14 eldifbd φ x X ¬ W Z
16 6 sselda φ k Z k A
17 16 adantlr φ x X k Z k A
18 3 adantr φ k A J TopOn X
19 2 cnfldtopon K TopOn
20 19 a1i φ k A K TopOn
21 cnf2 J TopOn X K TopOn x X B J Cn K x X B : X
22 18 20 5 21 syl3anc φ k A x X B : X
23 eqid x X B = x X B
24 23 fmpt x X B x X B : X
25 22 24 sylibr φ k A x X B
26 25 adantlr φ x X k A x X B
27 simplr φ x X k A x X
28 rspa x X B x X B
29 26 27 28 syl2anc φ x X k A B
30 17 29 syldan φ x X k Z B
31 csbeq1a k = W B = W / k B
32 14 eldifad φ x X W A
33 simpr φ x X W A W A
34 nfcv _ k W
35 nfv k W A
36 10 35 nfan k φ x X W A
37 11 nfel1 k W / k B
38 36 37 nfim k φ x X W A W / k B
39 eleq1 k = W k A W A
40 39 anbi2d k = W φ x X k A φ x X W A
41 31 eleq1d k = W B W / k B
42 40 41 imbi12d k = W φ x X k A B φ x X W A W / k B
43 34 38 42 29 vtoclgf W A φ x X W A W / k B
44 33 43 mpcom φ x X W A W / k B
45 32 44 mpdan φ x X W / k B
46 10 11 13 14 15 30 31 45 fprodsplitsn φ x X k Z W B = k Z B W / k B
47 46 mpteq2dva φ x X k Z W B = x X k Z B W / k B
48 7 eldifad φ W A
49 1 35 nfan k φ W A
50 nfcv _ k X
51 50 11 nfmpt _ k x X W / k B
52 nfcv _ k J Cn K
53 51 52 nfel k x X W / k B J Cn K
54 49 53 nfim k φ W A x X W / k B J Cn K
55 39 anbi2d k = W φ k A φ W A
56 31 mpteq2dv k = W x X B = x X W / k B
57 56 eleq1d k = W x X B J Cn K x X W / k B J Cn K
58 55 57 imbi12d k = W φ k A x X B J Cn K φ W A x X W / k B J Cn K
59 5 idi φ k A x X B J Cn K
60 34 54 58 59 vtoclgf W A φ W A x X W / k B J Cn K
61 60 anabsi7 φ W A x X W / k B J Cn K
62 48 61 mpdan φ x X W / k B J Cn K
63 2 mulcn × K × t K Cn K
64 63 a1i φ × K × t K Cn K
65 3 8 62 64 cnmpt12f φ x X k Z B W / k B J Cn K
66 47 65 eqeltrd φ x X k Z W B J Cn K