Metamath Proof Explorer


Theorem fprodcom

Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)

Ref Expression
Hypotheses fprodcom.1 φ A Fin
fprodcom.2 φ B Fin
fprodcom.3 φ j A k B C
Assertion fprodcom φ j A k B C = k B j A C

Proof

Step Hyp Ref Expression
1 fprodcom.1 φ A Fin
2 fprodcom.2 φ B Fin
3 fprodcom.3 φ j A k B C
4 2 adantr φ j A B Fin
5 ancom j A k B k B j A
6 5 a1i φ j A k B k B j A
7 1 2 4 6 3 fprodcom2 φ j A k B C = k B j A C