Metamath Proof Explorer


Theorem fprodconst

Description: The product of constant terms ( k is not free in B ). (Contributed by Scott Fenton, 12-Jan-2018)

Ref Expression
Assertion fprodconst A Fin B k A B = B A

Proof

Step Hyp Ref Expression
1 exp0 B B 0 = 1
2 1 eqcomd B 1 = B 0
3 prodeq1 A = k A B = k B
4 prod0 k B = 1
5 3 4 eqtrdi A = k A B = 1
6 fveq2 A = A =
7 hash0 = 0
8 6 7 eqtrdi A = A = 0
9 8 oveq2d A = B A = B 0
10 5 9 eqeq12d A = k A B = B A 1 = B 0
11 2 10 syl5ibrcom B A = k A B = B A
12 11 adantl A Fin B A = k A B = B A
13 eqidd k = f n B = B
14 simprl A Fin B A f : 1 A 1-1 onto A A
15 simprr A Fin B A f : 1 A 1-1 onto A f : 1 A 1-1 onto A
16 simpllr A Fin B A f : 1 A 1-1 onto A k A B
17 simpllr A Fin B A f : 1 A 1-1 onto A n 1 A B
18 elfznn n 1 A n
19 18 adantl A Fin B A f : 1 A 1-1 onto A n 1 A n
20 fvconst2g B n × B n = B
21 17 19 20 syl2anc A Fin B A f : 1 A 1-1 onto A n 1 A × B n = B
22 13 14 15 16 21 fprod A Fin B A f : 1 A 1-1 onto A k A B = seq 1 × × B A
23 expnnval B A B A = seq 1 × × B A
24 23 ad2ant2lr A Fin B A f : 1 A 1-1 onto A B A = seq 1 × × B A
25 22 24 eqtr4d A Fin B A f : 1 A 1-1 onto A k A B = B A
26 25 expr A Fin B A f : 1 A 1-1 onto A k A B = B A
27 26 exlimdv A Fin B A f f : 1 A 1-1 onto A k A B = B A
28 27 expimpd A Fin B A f f : 1 A 1-1 onto A k A B = B A
29 fz1f1o A Fin A = A f f : 1 A 1-1 onto A
30 29 adantr A Fin B A = A f f : 1 A 1-1 onto A
31 12 28 30 mpjaod A Fin B k A B = B A