Metamath Proof Explorer


Theorem fproddiv

Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Hypotheses fprodmul.1 φ A Fin
fprodmul.2 φ k A B
fprodmul.3 φ k A C
fproddiv.4 φ k A C 0
Assertion fproddiv φ k A B C = k A B k A C

Proof

Step Hyp Ref Expression
1 fprodmul.1 φ A Fin
2 fprodmul.2 φ k A B
3 fprodmul.3 φ k A C
4 fproddiv.4 φ k A C 0
5 1div1e1 1 1 = 1
6 5 eqcomi 1 = 1 1
7 prodeq1 A = k A B C = k B C
8 prod0 k B C = 1
9 7 8 eqtrdi A = k A B C = 1
10 prodeq1 A = k A B = k B
11 prod0 k B = 1
12 10 11 eqtrdi A = k A B = 1
13 prodeq1 A = k A C = k C
14 prod0 k C = 1
15 13 14 eqtrdi A = k A C = 1
16 12 15 oveq12d A = k A B k A C = 1 1
17 6 9 16 3eqtr4a A = k A B C = k A B k A C
18 17 a1i φ A = k A B C = k A B k A C
19 simprl φ A f : 1 A 1-1 onto A A
20 nnuz = 1
21 19 20 eleqtrdi φ A f : 1 A 1-1 onto A A 1
22 2 fmpttd φ k A B : A
23 f1of f : 1 A 1-1 onto A f : 1 A A
24 23 adantl A f : 1 A 1-1 onto A f : 1 A A
25 fco k A B : A f : 1 A A k A B f : 1 A
26 22 24 25 syl2an φ A f : 1 A 1-1 onto A k A B f : 1 A
27 26 ffvelrnda φ A f : 1 A 1-1 onto A n 1 A k A B f n
28 3 fmpttd φ k A C : A
29 fco k A C : A f : 1 A A k A C f : 1 A
30 28 24 29 syl2an φ A f : 1 A 1-1 onto A k A C f : 1 A
31 30 ffvelrnda φ A f : 1 A 1-1 onto A n 1 A k A C f n
32 simprr φ A f : 1 A 1-1 onto A f : 1 A 1-1 onto A
33 32 23 syl φ A f : 1 A 1-1 onto A f : 1 A A
34 fvco3 f : 1 A A n 1 A k A C f n = k A C f n
35 33 34 sylan φ A f : 1 A 1-1 onto A n 1 A k A C f n = k A C f n
36 33 ffvelrnda φ A f : 1 A 1-1 onto A n 1 A f n A
37 simpr φ k A k A
38 eqid k A C = k A C
39 38 fvmpt2 k A C k A C k = C
40 37 3 39 syl2anc φ k A k A C k = C
41 40 4 eqnetrd φ k A k A C k 0
42 41 ralrimiva φ k A k A C k 0
43 42 ad2antrr φ A f : 1 A 1-1 onto A n 1 A k A k A C k 0
44 nffvmpt1 _ k k A C f n
45 nfcv _ k 0
46 44 45 nfne k k A C f n 0
47 fveq2 k = f n k A C k = k A C f n
48 47 neeq1d k = f n k A C k 0 k A C f n 0
49 46 48 rspc f n A k A k A C k 0 k A C f n 0
50 36 43 49 sylc φ A f : 1 A 1-1 onto A n 1 A k A C f n 0
51 35 50 eqnetrd φ A f : 1 A 1-1 onto A n 1 A k A C f n 0
52 2 3 4 divcld φ k A B C
53 eqid k A B C = k A B C
54 53 fvmpt2 k A B C k A B C k = B C
55 37 52 54 syl2anc φ k A k A B C k = B C
56 eqid k A B = k A B
57 56 fvmpt2 k A B k A B k = B
58 37 2 57 syl2anc φ k A k A B k = B
59 58 40 oveq12d φ k A k A B k k A C k = B C
60 55 59 eqtr4d φ k A k A B C k = k A B k k A C k
61 60 ralrimiva φ k A k A B C k = k A B k k A C k
62 61 ad2antrr φ A f : 1 A 1-1 onto A n 1 A k A k A B C k = k A B k k A C k
63 nffvmpt1 _ k k A B C f n
64 nffvmpt1 _ k k A B f n
65 nfcv _ k ÷
66 64 65 44 nfov _ k k A B f n k A C f n
67 63 66 nfeq k k A B C f n = k A B f n k A C f n
68 fveq2 k = f n k A B C k = k A B C f n
69 fveq2 k = f n k A B k = k A B f n
70 69 47 oveq12d k = f n k A B k k A C k = k A B f n k A C f n
71 68 70 eqeq12d k = f n k A B C k = k A B k k A C k k A B C f n = k A B f n k A C f n
72 67 71 rspc f n A k A k A B C k = k A B k k A C k k A B C f n = k A B f n k A C f n
73 36 62 72 sylc φ A f : 1 A 1-1 onto A n 1 A k A B C f n = k A B f n k A C f n
74 fvco3 f : 1 A A n 1 A k A B C f n = k A B C f n
75 33 74 sylan φ A f : 1 A 1-1 onto A n 1 A k A B C f n = k A B C f n
76 fvco3 f : 1 A A n 1 A k A B f n = k A B f n
77 33 76 sylan φ A f : 1 A 1-1 onto A n 1 A k A B f n = k A B f n
78 77 35 oveq12d φ A f : 1 A 1-1 onto A n 1 A k A B f n k A C f n = k A B f n k A C f n
79 73 75 78 3eqtr4d φ A f : 1 A 1-1 onto A n 1 A k A B C f n = k A B f n k A C f n
80 21 27 31 51 79 prodfdiv φ A f : 1 A 1-1 onto A seq 1 × k A B C f A = seq 1 × k A B f A seq 1 × k A C f A
81 fveq2 m = f n k A B C m = k A B C f n
82 52 fmpttd φ k A B C : A
83 82 adantr φ A f : 1 A 1-1 onto A k A B C : A
84 83 ffvelrnda φ A f : 1 A 1-1 onto A m A k A B C m
85 81 19 32 84 75 fprod φ A f : 1 A 1-1 onto A m A k A B C m = seq 1 × k A B C f A
86 fveq2 m = f n k A B m = k A B f n
87 22 adantr φ A f : 1 A 1-1 onto A k A B : A
88 87 ffvelrnda φ A f : 1 A 1-1 onto A m A k A B m
89 86 19 32 88 77 fprod φ A f : 1 A 1-1 onto A m A k A B m = seq 1 × k A B f A
90 fveq2 m = f n k A C m = k A C f n
91 28 adantr φ A f : 1 A 1-1 onto A k A C : A
92 91 ffvelrnda φ A f : 1 A 1-1 onto A m A k A C m
93 90 19 32 92 35 fprod φ A f : 1 A 1-1 onto A m A k A C m = seq 1 × k A C f A
94 89 93 oveq12d φ A f : 1 A 1-1 onto A m A k A B m m A k A C m = seq 1 × k A B f A seq 1 × k A C f A
95 80 85 94 3eqtr4d φ A f : 1 A 1-1 onto A m A k A B C m = m A k A B m m A k A C m
96 prodfc m A k A B C m = k A B C
97 prodfc m A k A B m = k A B
98 prodfc m A k A C m = k A C
99 97 98 oveq12i m A k A B m m A k A C m = k A B k A C
100 95 96 99 3eqtr3g φ A f : 1 A 1-1 onto A k A B C = k A B k A C
101 100 expr φ A f : 1 A 1-1 onto A k A B C = k A B k A C
102 101 exlimdv φ A f f : 1 A 1-1 onto A k A B C = k A B k A C
103 102 expimpd φ A f f : 1 A 1-1 onto A k A B C = k A B k A C
104 fz1f1o A Fin A = A f f : 1 A 1-1 onto A
105 1 104 syl φ A = A f f : 1 A 1-1 onto A
106 18 103 105 mpjaod φ k A B C = k A B k A C