| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodmul.1 |
|
| 2 |
|
fprodmul.2 |
|
| 3 |
|
fprodmul.3 |
|
| 4 |
|
fproddiv.4 |
|
| 5 |
|
1div1e1 |
|
| 6 |
5
|
eqcomi |
|
| 7 |
|
prodeq1 |
|
| 8 |
|
prod0 |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
|
prodeq1 |
|
| 11 |
|
prod0 |
|
| 12 |
10 11
|
eqtrdi |
|
| 13 |
|
prodeq1 |
|
| 14 |
|
prod0 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
12 15
|
oveq12d |
|
| 17 |
6 9 16
|
3eqtr4a |
|
| 18 |
17
|
a1i |
|
| 19 |
|
simprl |
|
| 20 |
|
nnuz |
|
| 21 |
19 20
|
eleqtrdi |
|
| 22 |
2
|
fmpttd |
|
| 23 |
|
f1of |
|
| 24 |
23
|
adantl |
|
| 25 |
|
fco |
|
| 26 |
22 24 25
|
syl2an |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
3
|
fmpttd |
|
| 29 |
|
fco |
|
| 30 |
28 24 29
|
syl2an |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
|
simprr |
|
| 33 |
32 23
|
syl |
|
| 34 |
|
fvco3 |
|
| 35 |
33 34
|
sylan |
|
| 36 |
33
|
ffvelcdmda |
|
| 37 |
|
simpr |
|
| 38 |
|
eqid |
|
| 39 |
38
|
fvmpt2 |
|
| 40 |
37 3 39
|
syl2anc |
|
| 41 |
40 4
|
eqnetrd |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
nffvmpt1 |
|
| 45 |
|
nfcv |
|
| 46 |
44 45
|
nfne |
|
| 47 |
|
fveq2 |
|
| 48 |
47
|
neeq1d |
|
| 49 |
46 48
|
rspc |
|
| 50 |
36 43 49
|
sylc |
|
| 51 |
35 50
|
eqnetrd |
|
| 52 |
2 3 4
|
divcld |
|
| 53 |
|
eqid |
|
| 54 |
53
|
fvmpt2 |
|
| 55 |
37 52 54
|
syl2anc |
|
| 56 |
|
eqid |
|
| 57 |
56
|
fvmpt2 |
|
| 58 |
37 2 57
|
syl2anc |
|
| 59 |
58 40
|
oveq12d |
|
| 60 |
55 59
|
eqtr4d |
|
| 61 |
60
|
ralrimiva |
|
| 62 |
61
|
ad2antrr |
|
| 63 |
|
nffvmpt1 |
|
| 64 |
|
nffvmpt1 |
|
| 65 |
|
nfcv |
|
| 66 |
64 65 44
|
nfov |
|
| 67 |
63 66
|
nfeq |
|
| 68 |
|
fveq2 |
|
| 69 |
|
fveq2 |
|
| 70 |
69 47
|
oveq12d |
|
| 71 |
68 70
|
eqeq12d |
|
| 72 |
67 71
|
rspc |
|
| 73 |
36 62 72
|
sylc |
|
| 74 |
|
fvco3 |
|
| 75 |
33 74
|
sylan |
|
| 76 |
|
fvco3 |
|
| 77 |
33 76
|
sylan |
|
| 78 |
77 35
|
oveq12d |
|
| 79 |
73 75 78
|
3eqtr4d |
|
| 80 |
21 27 31 51 79
|
prodfdiv |
|
| 81 |
|
fveq2 |
|
| 82 |
52
|
fmpttd |
|
| 83 |
82
|
adantr |
|
| 84 |
83
|
ffvelcdmda |
|
| 85 |
81 19 32 84 75
|
fprod |
|
| 86 |
|
fveq2 |
|
| 87 |
22
|
adantr |
|
| 88 |
87
|
ffvelcdmda |
|
| 89 |
86 19 32 88 77
|
fprod |
|
| 90 |
|
fveq2 |
|
| 91 |
28
|
adantr |
|
| 92 |
91
|
ffvelcdmda |
|
| 93 |
90 19 32 92 35
|
fprod |
|
| 94 |
89 93
|
oveq12d |
|
| 95 |
80 85 94
|
3eqtr4d |
|
| 96 |
|
prodfc |
|
| 97 |
|
prodfc |
|
| 98 |
|
prodfc |
|
| 99 |
97 98
|
oveq12i |
|
| 100 |
95 96 99
|
3eqtr3g |
|
| 101 |
100
|
expr |
|
| 102 |
101
|
exlimdv |
|
| 103 |
102
|
expimpd |
|
| 104 |
|
fz1f1o |
|
| 105 |
1 104
|
syl |
|
| 106 |
18 103 105
|
mpjaod |
|