Metamath Proof Explorer


Theorem fproddivf

Description: The quotient of two finite products. A version of fproddiv using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fproddivf.kph k φ
fproddivf.a φ A Fin
fproddivf.b φ k A B
fproddivf.c φ k A C
fproddivf.ne0 φ k A C 0
Assertion fproddivf φ k A B C = k A B k A C

Proof

Step Hyp Ref Expression
1 fproddivf.kph k φ
2 fproddivf.a φ A Fin
3 fproddivf.b φ k A B
4 fproddivf.c φ k A C
5 fproddivf.ne0 φ k A C 0
6 nfcv _ j B C
7 nfcsb1v _ k j / k B
8 nfcv _ k ÷
9 nfcsb1v _ k j / k C
10 7 8 9 nfov _ k j / k B j / k C
11 csbeq1a k = j B = j / k B
12 csbeq1a k = j C = j / k C
13 11 12 oveq12d k = j B C = j / k B j / k C
14 6 10 13 cbvprodi k A B C = j A j / k B j / k C
15 14 a1i φ k A B C = j A j / k B j / k C
16 nfvd φ k j A
17 1 16 nfan1 k φ j A
18 7 nfel1 k j / k B
19 17 18 nfim k φ j A j / k B
20 eleq1w k = j k A j A
21 20 anbi2d k = j φ k A φ j A
22 11 eleq1d k = j B j / k B
23 21 22 imbi12d k = j φ k A B φ j A j / k B
24 19 23 3 chvarfv φ j A j / k B
25 9 nfel1 k j / k C
26 17 25 nfim k φ j A j / k C
27 12 eleq1d k = j C j / k C
28 21 27 imbi12d k = j φ k A C φ j A j / k C
29 26 28 4 chvarfv φ j A j / k C
30 nfcv _ k 0
31 9 30 nfne k j / k C 0
32 17 31 nfim k φ j A j / k C 0
33 12 neeq1d k = j C 0 j / k C 0
34 21 33 imbi12d k = j φ k A C 0 φ j A j / k C 0
35 32 34 5 chvarfv φ j A j / k C 0
36 2 24 29 35 fproddiv φ j A j / k B j / k C = j A j / k B j A j / k C
37 nfcv _ j B
38 37 7 11 cbvprodi k A B = j A j / k B
39 38 eqcomi j A j / k B = k A B
40 39 a1i φ j A j / k B = k A B
41 nfcv _ j C
42 12 equcoms j = k C = j / k C
43 42 eqcomd j = k j / k C = C
44 9 41 43 cbvprodi j A j / k C = k A C
45 44 a1i φ j A j / k C = k A C
46 40 45 oveq12d φ j A j / k B j A j / k C = k A B k A C
47 15 36 46 3eqtrd φ k A B C = k A B k A C