Step |
Hyp |
Ref |
Expression |
1 |
|
fproddivf.kph |
|
2 |
|
fproddivf.a |
|
3 |
|
fproddivf.b |
|
4 |
|
fproddivf.c |
|
5 |
|
fproddivf.ne0 |
|
6 |
|
nfcv |
|
7 |
|
nfcsb1v |
|
8 |
|
nfcv |
|
9 |
|
nfcsb1v |
|
10 |
7 8 9
|
nfov |
|
11 |
|
csbeq1a |
|
12 |
|
csbeq1a |
|
13 |
11 12
|
oveq12d |
|
14 |
6 10 13
|
cbvprodi |
|
15 |
14
|
a1i |
|
16 |
|
nfvd |
|
17 |
1 16
|
nfan1 |
|
18 |
7
|
nfel1 |
|
19 |
17 18
|
nfim |
|
20 |
|
eleq1w |
|
21 |
20
|
anbi2d |
|
22 |
11
|
eleq1d |
|
23 |
21 22
|
imbi12d |
|
24 |
19 23 3
|
chvarfv |
|
25 |
9
|
nfel1 |
|
26 |
17 25
|
nfim |
|
27 |
12
|
eleq1d |
|
28 |
21 27
|
imbi12d |
|
29 |
26 28 4
|
chvarfv |
|
30 |
|
nfcv |
|
31 |
9 30
|
nfne |
|
32 |
17 31
|
nfim |
|
33 |
12
|
neeq1d |
|
34 |
21 33
|
imbi12d |
|
35 |
32 34 5
|
chvarfv |
|
36 |
2 24 29 35
|
fproddiv |
|
37 |
|
nfcv |
|
38 |
37 7 11
|
cbvprodi |
|
39 |
38
|
eqcomi |
|
40 |
39
|
a1i |
|
41 |
|
nfcv |
|
42 |
12
|
equcoms |
|
43 |
42
|
eqcomd |
|
44 |
9 41 43
|
cbvprodi |
|
45 |
44
|
a1i |
|
46 |
40 45
|
oveq12d |
|
47 |
15 36 46
|
3eqtrd |
|