Metamath Proof Explorer


Theorem fproddvdsd

Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020) (Proof shortened by AV, 2-Aug-2021)

Ref Expression
Hypotheses fproddvdsd.f φ A Fin
fproddvdsd.s φ A
Assertion fproddvdsd φ x A x k A k

Proof

Step Hyp Ref Expression
1 fproddvdsd.f φ A Fin
2 fproddvdsd.s φ A
3 f1oi I : 1-1 onto
4 f1of I : 1-1 onto I :
5 3 4 mp1i φ I :
6 1 2 5 fprodfvdvdsd φ x A I x k A I k
7 2 sselda φ x A x
8 fvresi x I x = x
9 7 8 syl φ x A I x = x
10 9 eqcomd φ x A x = I x
11 2 sseld φ k A k
12 11 adantr φ x A k A k
13 12 imp φ x A k A k
14 fvresi k I k = k
15 13 14 syl φ x A k A I k = k
16 15 eqcomd φ x A k A k = I k
17 16 prodeq2dv φ x A k A k = k A I k
18 10 17 breq12d φ x A x k A k I x k A I k
19 18 ralbidva φ x A x k A k x A I x k A I k
20 6 19 mpbird φ x A x k A k