Step |
Hyp |
Ref |
Expression |
1 |
|
fprodefsum.1 |
|
2 |
|
fprodefsum.2 |
|
3 |
|
fprodefsum.3 |
|
4 |
2 1
|
eleqtrdi |
|
5 |
|
oveq2 |
|
6 |
5
|
prodeq1d |
|
7 |
5
|
sumeq1d |
|
8 |
7
|
fveq2d |
|
9 |
6 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
11
|
prodeq1d |
|
13 |
11
|
sumeq1d |
|
14 |
13
|
fveq2d |
|
15 |
12 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
oveq2 |
|
18 |
17
|
prodeq1d |
|
19 |
17
|
sumeq1d |
|
20 |
19
|
fveq2d |
|
21 |
18 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
oveq2 |
|
24 |
23
|
prodeq1d |
|
25 |
23
|
sumeq1d |
|
26 |
25
|
fveq2d |
|
27 |
24 26
|
eqeq12d |
|
28 |
27
|
imbi2d |
|
29 |
|
fzsn |
|
30 |
29
|
adantl |
|
31 |
30
|
prodeq1d |
|
32 |
|
simpr |
|
33 |
|
uzid |
|
34 |
33 1
|
eleqtrrdi |
|
35 |
|
efcl |
|
36 |
3 35
|
syl |
|
37 |
36
|
fmpttd |
|
38 |
37
|
ffvelrnda |
|
39 |
34 38
|
sylan2 |
|
40 |
|
fveq2 |
|
41 |
40
|
prodsn |
|
42 |
32 39 41
|
syl2anc |
|
43 |
34
|
adantl |
|
44 |
|
fvex |
|
45 |
|
nfcv |
|
46 |
|
nfcv |
|
47 |
|
nfcsb1v |
|
48 |
46 47
|
nffv |
|
49 |
|
csbeq1a |
|
50 |
49
|
fveq2d |
|
51 |
|
eqid |
|
52 |
45 48 50 51
|
fvmptf |
|
53 |
43 44 52
|
sylancl |
|
54 |
31 42 53
|
3eqtrd |
|
55 |
30
|
sumeq1d |
|
56 |
3
|
fmpttd |
|
57 |
56
|
ffvelrnda |
|
58 |
34 57
|
sylan2 |
|
59 |
|
fveq2 |
|
60 |
59
|
sumsn |
|
61 |
32 58 60
|
syl2anc |
|
62 |
3
|
ralrimiva |
|
63 |
47
|
nfel1 |
|
64 |
49
|
eleq1d |
|
65 |
63 64
|
rspc |
|
66 |
65
|
impcom |
|
67 |
62 34 66
|
syl2an |
|
68 |
|
eqid |
|
69 |
68
|
fvmpts |
|
70 |
43 67 69
|
syl2anc |
|
71 |
55 61 70
|
3eqtrd |
|
72 |
71
|
fveq2d |
|
73 |
54 72
|
eqtr4d |
|
74 |
73
|
expcom |
|
75 |
|
simp3 |
|
76 |
1
|
peano2uzs |
|
77 |
|
simpr |
|
78 |
|
nfcsb1v |
|
79 |
78
|
nfel1 |
|
80 |
|
csbeq1a |
|
81 |
80
|
eleq1d |
|
82 |
79 81
|
rspc |
|
83 |
62 82
|
mpan9 |
|
84 |
|
efcl |
|
85 |
83 84
|
syl |
|
86 |
|
nfcv |
|
87 |
46 78
|
nffv |
|
88 |
80
|
fveq2d |
|
89 |
86 87 88 51
|
fvmptf |
|
90 |
77 85 89
|
syl2anc |
|
91 |
68
|
fvmpts |
|
92 |
77 83 91
|
syl2anc |
|
93 |
92
|
fveq2d |
|
94 |
90 93
|
eqtr4d |
|
95 |
76 94
|
sylan2 |
|
96 |
95
|
3adant3 |
|
97 |
75 96
|
oveq12d |
|
98 |
|
simpr |
|
99 |
98 1
|
eleqtrdi |
|
100 |
|
elfzuz |
|
101 |
100 1
|
eleqtrrdi |
|
102 |
37
|
ffvelrnda |
|
103 |
101 102
|
sylan2 |
|
104 |
103
|
adantlr |
|
105 |
|
fveq2 |
|
106 |
99 104 105
|
fprodp1 |
|
107 |
106
|
3adant3 |
|
108 |
56
|
ffvelrnda |
|
109 |
101 108
|
sylan2 |
|
110 |
109
|
adantlr |
|
111 |
|
fveq2 |
|
112 |
99 110 111
|
fsump1 |
|
113 |
112
|
fveq2d |
|
114 |
|
fzfid |
|
115 |
|
elfzuz |
|
116 |
115 1
|
eleqtrrdi |
|
117 |
116 108
|
sylan2 |
|
118 |
117
|
adantlr |
|
119 |
114 118
|
fsumcl |
|
120 |
56
|
ffvelrnda |
|
121 |
76 120
|
sylan2 |
|
122 |
|
efadd |
|
123 |
119 121 122
|
syl2anc |
|
124 |
113 123
|
eqtrd |
|
125 |
124
|
3adant3 |
|
126 |
97 107 125
|
3eqtr4d |
|
127 |
126
|
3exp |
|
128 |
127
|
com12 |
|
129 |
128
|
a2d |
|
130 |
1
|
eqcomi |
|
131 |
129 130
|
eleq2s |
|
132 |
10 16 22 28 74 131
|
uzind4 |
|
133 |
4 132
|
mpcom |
|
134 |
|
fvres |
|
135 |
|
fzssuz |
|
136 |
135 1
|
sseqtrri |
|
137 |
|
resmpt |
|
138 |
136 137
|
ax-mp |
|
139 |
138
|
fveq1i |
|
140 |
134 139
|
eqtr3di |
|
141 |
140
|
prodeq2i |
|
142 |
|
prodfc |
|
143 |
141 142
|
eqtri |
|
144 |
|
fvres |
|
145 |
|
resmpt |
|
146 |
136 145
|
ax-mp |
|
147 |
146
|
fveq1i |
|
148 |
144 147
|
eqtr3di |
|
149 |
148
|
sumeq2i |
|
150 |
|
sumfc |
|
151 |
149 150
|
eqtri |
|
152 |
151
|
fveq2i |
|
153 |
133 143 152
|
3eqtr3g |
|