Metamath Proof Explorer


Theorem fprodefsum

Description: Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017)

Ref Expression
Hypotheses fprodefsum.1 Z = M
fprodefsum.2 φ N Z
fprodefsum.3 φ k Z A
Assertion fprodefsum φ k = M N e A = e k = M N A

Proof

Step Hyp Ref Expression
1 fprodefsum.1 Z = M
2 fprodefsum.2 φ N Z
3 fprodefsum.3 φ k Z A
4 2 1 eleqtrdi φ N M
5 oveq2 a = M M a = M M
6 5 prodeq1d a = M m = M a k Z e A m = m = M M k Z e A m
7 5 sumeq1d a = M m = M a k Z A m = m = M M k Z A m
8 7 fveq2d a = M e m = M a k Z A m = e m = M M k Z A m
9 6 8 eqeq12d a = M m = M a k Z e A m = e m = M a k Z A m m = M M k Z e A m = e m = M M k Z A m
10 9 imbi2d a = M φ m = M a k Z e A m = e m = M a k Z A m φ m = M M k Z e A m = e m = M M k Z A m
11 oveq2 a = n M a = M n
12 11 prodeq1d a = n m = M a k Z e A m = m = M n k Z e A m
13 11 sumeq1d a = n m = M a k Z A m = m = M n k Z A m
14 13 fveq2d a = n e m = M a k Z A m = e m = M n k Z A m
15 12 14 eqeq12d a = n m = M a k Z e A m = e m = M a k Z A m m = M n k Z e A m = e m = M n k Z A m
16 15 imbi2d a = n φ m = M a k Z e A m = e m = M a k Z A m φ m = M n k Z e A m = e m = M n k Z A m
17 oveq2 a = n + 1 M a = M n + 1
18 17 prodeq1d a = n + 1 m = M a k Z e A m = m = M n + 1 k Z e A m
19 17 sumeq1d a = n + 1 m = M a k Z A m = m = M n + 1 k Z A m
20 19 fveq2d a = n + 1 e m = M a k Z A m = e m = M n + 1 k Z A m
21 18 20 eqeq12d a = n + 1 m = M a k Z e A m = e m = M a k Z A m m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
22 21 imbi2d a = n + 1 φ m = M a k Z e A m = e m = M a k Z A m φ m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
23 oveq2 a = N M a = M N
24 23 prodeq1d a = N m = M a k Z e A m = m = M N k Z e A m
25 23 sumeq1d a = N m = M a k Z A m = m = M N k Z A m
26 25 fveq2d a = N e m = M a k Z A m = e m = M N k Z A m
27 24 26 eqeq12d a = N m = M a k Z e A m = e m = M a k Z A m m = M N k Z e A m = e m = M N k Z A m
28 27 imbi2d a = N φ m = M a k Z e A m = e m = M a k Z A m φ m = M N k Z e A m = e m = M N k Z A m
29 fzsn M M M = M
30 29 adantl φ M M M = M
31 30 prodeq1d φ M m = M M k Z e A m = m M k Z e A m
32 simpr φ M M
33 uzid M M M
34 33 1 eleqtrrdi M M Z
35 efcl A e A
36 3 35 syl φ k Z e A
37 36 fmpttd φ k Z e A : Z
38 37 ffvelrnda φ M Z k Z e A M
39 34 38 sylan2 φ M k Z e A M
40 fveq2 m = M k Z e A m = k Z e A M
41 40 prodsn M k Z e A M m M k Z e A m = k Z e A M
42 32 39 41 syl2anc φ M m M k Z e A m = k Z e A M
43 34 adantl φ M M Z
44 fvex e M / k A V
45 nfcv _ k M
46 nfcv _ k exp
47 nfcsb1v _ k M / k A
48 46 47 nffv _ k e M / k A
49 csbeq1a k = M A = M / k A
50 49 fveq2d k = M e A = e M / k A
51 eqid k Z e A = k Z e A
52 45 48 50 51 fvmptf M Z e M / k A V k Z e A M = e M / k A
53 43 44 52 sylancl φ M k Z e A M = e M / k A
54 31 42 53 3eqtrd φ M m = M M k Z e A m = e M / k A
55 30 sumeq1d φ M m = M M k Z A m = m M k Z A m
56 3 fmpttd φ k Z A : Z
57 56 ffvelrnda φ M Z k Z A M
58 34 57 sylan2 φ M k Z A M
59 fveq2 m = M k Z A m = k Z A M
60 59 sumsn M k Z A M m M k Z A m = k Z A M
61 32 58 60 syl2anc φ M m M k Z A m = k Z A M
62 3 ralrimiva φ k Z A
63 47 nfel1 k M / k A
64 49 eleq1d k = M A M / k A
65 63 64 rspc M Z k Z A M / k A
66 65 impcom k Z A M Z M / k A
67 62 34 66 syl2an φ M M / k A
68 eqid k Z A = k Z A
69 68 fvmpts M Z M / k A k Z A M = M / k A
70 43 67 69 syl2anc φ M k Z A M = M / k A
71 55 61 70 3eqtrd φ M m = M M k Z A m = M / k A
72 71 fveq2d φ M e m = M M k Z A m = e M / k A
73 54 72 eqtr4d φ M m = M M k Z e A m = e m = M M k Z A m
74 73 expcom M φ m = M M k Z e A m = e m = M M k Z A m
75 simp3 φ n Z m = M n k Z e A m = e m = M n k Z A m m = M n k Z e A m = e m = M n k Z A m
76 1 peano2uzs n Z n + 1 Z
77 simpr φ n + 1 Z n + 1 Z
78 nfcsb1v _ k n + 1 / k A
79 78 nfel1 k n + 1 / k A
80 csbeq1a k = n + 1 A = n + 1 / k A
81 80 eleq1d k = n + 1 A n + 1 / k A
82 79 81 rspc n + 1 Z k Z A n + 1 / k A
83 62 82 mpan9 φ n + 1 Z n + 1 / k A
84 efcl n + 1 / k A e n + 1 / k A
85 83 84 syl φ n + 1 Z e n + 1 / k A
86 nfcv _ k n + 1
87 46 78 nffv _ k e n + 1 / k A
88 80 fveq2d k = n + 1 e A = e n + 1 / k A
89 86 87 88 51 fvmptf n + 1 Z e n + 1 / k A k Z e A n + 1 = e n + 1 / k A
90 77 85 89 syl2anc φ n + 1 Z k Z e A n + 1 = e n + 1 / k A
91 68 fvmpts n + 1 Z n + 1 / k A k Z A n + 1 = n + 1 / k A
92 77 83 91 syl2anc φ n + 1 Z k Z A n + 1 = n + 1 / k A
93 92 fveq2d φ n + 1 Z e k Z A n + 1 = e n + 1 / k A
94 90 93 eqtr4d φ n + 1 Z k Z e A n + 1 = e k Z A n + 1
95 76 94 sylan2 φ n Z k Z e A n + 1 = e k Z A n + 1
96 95 3adant3 φ n Z m = M n k Z e A m = e m = M n k Z A m k Z e A n + 1 = e k Z A n + 1
97 75 96 oveq12d φ n Z m = M n k Z e A m = e m = M n k Z A m m = M n k Z e A m k Z e A n + 1 = e m = M n k Z A m e k Z A n + 1
98 simpr φ n Z n Z
99 98 1 eleqtrdi φ n Z n M
100 elfzuz m M n + 1 m M
101 100 1 eleqtrrdi m M n + 1 m Z
102 37 ffvelrnda φ m Z k Z e A m
103 101 102 sylan2 φ m M n + 1 k Z e A m
104 103 adantlr φ n Z m M n + 1 k Z e A m
105 fveq2 m = n + 1 k Z e A m = k Z e A n + 1
106 99 104 105 fprodp1 φ n Z m = M n + 1 k Z e A m = m = M n k Z e A m k Z e A n + 1
107 106 3adant3 φ n Z m = M n k Z e A m = e m = M n k Z A m m = M n + 1 k Z e A m = m = M n k Z e A m k Z e A n + 1
108 56 ffvelrnda φ m Z k Z A m
109 101 108 sylan2 φ m M n + 1 k Z A m
110 109 adantlr φ n Z m M n + 1 k Z A m
111 fveq2 m = n + 1 k Z A m = k Z A n + 1
112 99 110 111 fsump1 φ n Z m = M n + 1 k Z A m = m = M n k Z A m + k Z A n + 1
113 112 fveq2d φ n Z e m = M n + 1 k Z A m = e m = M n k Z A m + k Z A n + 1
114 fzfid φ n Z M n Fin
115 elfzuz m M n m M
116 115 1 eleqtrrdi m M n m Z
117 116 108 sylan2 φ m M n k Z A m
118 117 adantlr φ n Z m M n k Z A m
119 114 118 fsumcl φ n Z m = M n k Z A m
120 56 ffvelrnda φ n + 1 Z k Z A n + 1
121 76 120 sylan2 φ n Z k Z A n + 1
122 efadd m = M n k Z A m k Z A n + 1 e m = M n k Z A m + k Z A n + 1 = e m = M n k Z A m e k Z A n + 1
123 119 121 122 syl2anc φ n Z e m = M n k Z A m + k Z A n + 1 = e m = M n k Z A m e k Z A n + 1
124 113 123 eqtrd φ n Z e m = M n + 1 k Z A m = e m = M n k Z A m e k Z A n + 1
125 124 3adant3 φ n Z m = M n k Z e A m = e m = M n k Z A m e m = M n + 1 k Z A m = e m = M n k Z A m e k Z A n + 1
126 97 107 125 3eqtr4d φ n Z m = M n k Z e A m = e m = M n k Z A m m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
127 126 3exp φ n Z m = M n k Z e A m = e m = M n k Z A m m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
128 127 com12 n Z φ m = M n k Z e A m = e m = M n k Z A m m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
129 128 a2d n Z φ m = M n k Z e A m = e m = M n k Z A m φ m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
130 1 eqcomi M = Z
131 129 130 eleq2s n M φ m = M n k Z e A m = e m = M n k Z A m φ m = M n + 1 k Z e A m = e m = M n + 1 k Z A m
132 10 16 22 28 74 131 uzind4 N M φ m = M N k Z e A m = e m = M N k Z A m
133 4 132 mpcom φ m = M N k Z e A m = e m = M N k Z A m
134 fvres m M N k Z e A M N m = k Z e A m
135 fzssuz M N M
136 135 1 sseqtrri M N Z
137 resmpt M N Z k Z e A M N = k M N e A
138 136 137 ax-mp k Z e A M N = k M N e A
139 138 fveq1i k Z e A M N m = k M N e A m
140 134 139 eqtr3di m M N k Z e A m = k M N e A m
141 140 prodeq2i m = M N k Z e A m = m = M N k M N e A m
142 prodfc m = M N k M N e A m = k = M N e A
143 141 142 eqtri m = M N k Z e A m = k = M N e A
144 fvres m M N k Z A M N m = k Z A m
145 resmpt M N Z k Z A M N = k M N A
146 136 145 ax-mp k Z A M N = k M N A
147 146 fveq1i k Z A M N m = k M N A m
148 144 147 eqtr3di m M N k Z A m = k M N A m
149 148 sumeq2i m = M N k Z A m = m = M N k M N A m
150 sumfc m = M N k M N A m = k = M N A
151 149 150 eqtri m = M N k Z A m = k = M N A
152 151 fveq2i e m = M N k Z A m = e k = M N A
153 133 143 152 3eqtr3g φ k = M N e A = e k = M N A