Step |
Hyp |
Ref |
Expression |
1 |
|
fprodeq0.1 |
|
2 |
|
fprodeq0.2 |
|
3 |
|
fprodeq0.3 |
|
4 |
|
fprodeq0.4 |
|
5 |
|
eluzel2 |
|
6 |
5
|
adantl |
|
7 |
6
|
zred |
|
8 |
7
|
ltp1d |
|
9 |
|
fzdisj |
|
10 |
8 9
|
syl |
|
11 |
|
eluzel2 |
|
12 |
11 1
|
eleq2s |
|
13 |
2 12
|
syl |
|
14 |
13
|
adantr |
|
15 |
|
eluzelz |
|
16 |
15
|
adantl |
|
17 |
14 16 6
|
3jca |
|
18 |
|
eluzle |
|
19 |
18 1
|
eleq2s |
|
20 |
2 19
|
syl |
|
21 |
|
eluzle |
|
22 |
20 21
|
anim12i |
|
23 |
|
elfz2 |
|
24 |
17 22 23
|
sylanbrc |
|
25 |
|
fzsplit |
|
26 |
24 25
|
syl |
|
27 |
|
fzfid |
|
28 |
|
elfzuz |
|
29 |
28 1
|
eleqtrrdi |
|
30 |
29 3
|
sylan2 |
|
31 |
30
|
adantlr |
|
32 |
10 26 27 31
|
fprodsplit |
|
33 |
2 1
|
eleqtrdi |
|
34 |
|
elfzuz |
|
35 |
34 1
|
eleqtrrdi |
|
36 |
35 3
|
sylan2 |
|
37 |
33 36
|
fprodm1s |
|
38 |
2 4
|
csbied |
|
39 |
38
|
oveq2d |
|
40 |
|
fzfid |
|
41 |
|
elfzuz |
|
42 |
41 1
|
eleqtrrdi |
|
43 |
42 3
|
sylan2 |
|
44 |
40 43
|
fprodcl |
|
45 |
44
|
mul01d |
|
46 |
37 39 45
|
3eqtrd |
|
47 |
46
|
adantr |
|
48 |
47
|
oveq1d |
|
49 |
|
fzfid |
|
50 |
1
|
peano2uzs |
|
51 |
2 50
|
syl |
|
52 |
|
elfzuz |
|
53 |
1
|
uztrn2 |
|
54 |
51 52 53
|
syl2an |
|
55 |
54
|
adantrl |
|
56 |
55 3
|
syldan |
|
57 |
56
|
anassrs |
|
58 |
49 57
|
fprodcl |
|
59 |
58
|
mul02d |
|
60 |
32 48 59
|
3eqtrd |
|