Metamath Proof Explorer


Theorem fprodeq0g

Description: Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodeq0g.kph k φ
fprodeq0g.a φ A Fin
fprodeq0g.b φ k A B
fprodeq0g.c φ C A
fprodeq0g.b0 φ k = C B = 0
Assertion fprodeq0g φ k A B = 0

Proof

Step Hyp Ref Expression
1 fprodeq0g.kph k φ
2 fprodeq0g.a φ A Fin
3 fprodeq0g.b φ k A B
4 fprodeq0g.c φ C A
5 fprodeq0g.b0 φ k = C B = 0
6 nfcvd φ _ k 0
7 1 6 2 3 4 5 fprodsplit1f φ k A B = 0 k A C B
8 diffi A Fin A C Fin
9 2 8 syl φ A C Fin
10 eldifi k A C k A
11 10 3 sylan2 φ k A C B
12 1 9 11 fprodclf φ k A C B
13 12 mul02d φ 0 k A C B = 0
14 7 13 eqtrd φ k A B = 0