Metamath Proof Explorer


Theorem fprodex01

Description: A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses fprodex01.1 k=lB=C
fprodex01.a φAFin
fprodex01.b φkAB01
Assertion fprodex01 φkAB=iflAC=110

Proof

Step Hyp Ref Expression
1 fprodex01.1 k=lB=C
2 fprodex01.a φAFin
3 fprodex01.b φkAB01
4 simpr φlAC=1lAC=1
5 1 eqeq1d k=lB=1C=1
6 5 cbvralvw kAB=1lAC=1
7 4 6 sylibr φlAC=1kAB=1
8 7 prodeq2d φlAC=1kAB=kA1
9 prod1 A0AFinkA1=1
10 9 olcs AFinkA1=1
11 2 10 syl φkA1=1
12 11 adantr φlAC=1kA1=1
13 8 12 eqtr2d φlAC=11=kAB
14 nfv lφ
15 nfra1 llAC=1
16 15 nfn l¬lAC=1
17 14 16 nfan lφ¬lAC=1
18 nfv lkAB=0
19 2 adantr φ¬lAC=1AFin
20 19 ad2antrr φ¬lAC=1lAC=0AFin
21 pr01ssre 01
22 ax-resscn
23 21 22 sstri 01
24 23 3 sselid φkAB
25 24 adantlr φ¬lAC=1kAB
26 25 adantlr φ¬lAC=1lAkAB
27 26 adantlr φ¬lAC=1lAC=0kAB
28 simplr φ¬lAC=1lAC=0lA
29 simpr φ¬lAC=1lAC=0C=0
30 1 20 27 28 29 fprodeq02 φ¬lAC=1lAC=0kAB=0
31 rexnal lA¬C=1¬lAC=1
32 31 biimpri ¬lAC=1lA¬C=1
33 32 adantl φ¬lAC=1lA¬C=1
34 3 ralrimiva φkAB01
35 1 eleq1d k=lB01C01
36 35 cbvralvw kAB01lAC01
37 34 36 sylib φlAC01
38 37 r19.21bi φlAC01
39 c0ex 0V
40 1ex 1V
41 39 40 elpr2 C01C=0C=1
42 38 41 sylib φlAC=0C=1
43 42 orcomd φlAC=1C=0
44 43 ord φlA¬C=1C=0
45 44 reximdva φlA¬C=1lAC=0
46 45 adantr φ¬lAC=1lA¬C=1lAC=0
47 33 46 mpd φ¬lAC=1lAC=0
48 17 18 30 47 r19.29af2 φ¬lAC=1kAB=0
49 48 eqcomd φ¬lAC=10=kAB
50 13 49 ifeqda φiflAC=110=kAB
51 50 eqcomd φkAB=iflAC=110