| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodexp.kph |  | 
						
							| 2 |  | fprodexp.n |  | 
						
							| 3 |  | fprodexp.a |  | 
						
							| 4 |  | fprodexp.b |  | 
						
							| 5 |  | prodeq1 |  | 
						
							| 6 |  | prodeq1 |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 | 5 7 | eqeq12d |  | 
						
							| 9 |  | prodeq1 |  | 
						
							| 10 |  | prodeq1 |  | 
						
							| 11 | 10 | oveq1d |  | 
						
							| 12 | 9 11 | eqeq12d |  | 
						
							| 13 |  | prodeq1 |  | 
						
							| 14 |  | prodeq1 |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 | 13 15 | eqeq12d |  | 
						
							| 17 |  | prodeq1 |  | 
						
							| 18 |  | prodeq1 |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 17 19 | eqeq12d |  | 
						
							| 21 | 2 | nn0zd |  | 
						
							| 22 |  | 1exp |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 |  | prod0 |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 |  | prod0 |  | 
						
							| 28 | 27 | oveq1i |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 24 26 29 | 3eqtr4d |  | 
						
							| 31 |  | nfv |  | 
						
							| 32 | 1 31 | nfan |  | 
						
							| 33 | 3 | adantr |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 |  | ssfi |  | 
						
							| 36 | 33 34 35 | syl2anc |  | 
						
							| 37 | 36 | adantrr |  | 
						
							| 38 |  | simpll |  | 
						
							| 39 | 34 | sselda |  | 
						
							| 40 | 38 39 4 | syl2anc |  | 
						
							| 41 | 40 | adantlrr |  | 
						
							| 42 | 32 37 41 | fprodclf |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 |  | simprr |  | 
						
							| 45 | 44 | eldifad |  | 
						
							| 46 |  | nfv |  | 
						
							| 47 | 1 46 | nfan |  | 
						
							| 48 |  | nfcsb1v |  | 
						
							| 49 | 48 | nfel1 |  | 
						
							| 50 | 47 49 | nfim |  | 
						
							| 51 |  | eleq1w |  | 
						
							| 52 | 51 | anbi2d |  | 
						
							| 53 |  | csbeq1a |  | 
						
							| 54 | 53 | eleq1d |  | 
						
							| 55 | 52 54 | imbi12d |  | 
						
							| 56 | 50 55 4 | chvarfv |  | 
						
							| 57 | 43 45 56 | syl2anc |  | 
						
							| 58 | 2 | adantr |  | 
						
							| 59 |  | mulexp |  | 
						
							| 60 | 42 57 58 59 | syl3anc |  | 
						
							| 61 | 60 | eqcomd |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 |  | nfcv |  | 
						
							| 64 |  | nfcv |  | 
						
							| 65 | 48 63 64 | nfov |  | 
						
							| 66 | 44 | eldifbd |  | 
						
							| 67 | 2 | ad2antrr |  | 
						
							| 68 | 40 67 | expcld |  | 
						
							| 69 | 68 | adantlrr |  | 
						
							| 70 | 53 | oveq1d |  | 
						
							| 71 | 57 58 | expcld |  | 
						
							| 72 | 32 65 37 44 66 69 70 71 | fprodsplitsn |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 |  | oveq1 |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 | 73 75 | eqtrd |  | 
						
							| 77 | 32 48 37 44 66 41 53 57 | fprodsplitsn |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 | 78 | oveq1d |  | 
						
							| 80 | 62 76 79 | 3eqtr4d |  | 
						
							| 81 | 80 | ex |  | 
						
							| 82 | 8 12 16 20 30 81 3 | findcard2d |  |