Step |
Hyp |
Ref |
Expression |
1 |
|
fprodexp.kph |
|
2 |
|
fprodexp.n |
|
3 |
|
fprodexp.a |
|
4 |
|
fprodexp.b |
|
5 |
|
prodeq1 |
|
6 |
|
prodeq1 |
|
7 |
6
|
oveq1d |
|
8 |
5 7
|
eqeq12d |
|
9 |
|
prodeq1 |
|
10 |
|
prodeq1 |
|
11 |
10
|
oveq1d |
|
12 |
9 11
|
eqeq12d |
|
13 |
|
prodeq1 |
|
14 |
|
prodeq1 |
|
15 |
14
|
oveq1d |
|
16 |
13 15
|
eqeq12d |
|
17 |
|
prodeq1 |
|
18 |
|
prodeq1 |
|
19 |
18
|
oveq1d |
|
20 |
17 19
|
eqeq12d |
|
21 |
2
|
nn0zd |
|
22 |
|
1exp |
|
23 |
21 22
|
syl |
|
24 |
23
|
eqcomd |
|
25 |
|
prod0 |
|
26 |
25
|
a1i |
|
27 |
|
prod0 |
|
28 |
27
|
oveq1i |
|
29 |
28
|
a1i |
|
30 |
24 26 29
|
3eqtr4d |
|
31 |
|
nfv |
|
32 |
1 31
|
nfan |
|
33 |
3
|
adantr |
|
34 |
|
simpr |
|
35 |
|
ssfi |
|
36 |
33 34 35
|
syl2anc |
|
37 |
36
|
adantrr |
|
38 |
|
simpll |
|
39 |
34
|
sselda |
|
40 |
38 39 4
|
syl2anc |
|
41 |
40
|
adantlrr |
|
42 |
32 37 41
|
fprodclf |
|
43 |
|
simpl |
|
44 |
|
simprr |
|
45 |
44
|
eldifad |
|
46 |
|
nfv |
|
47 |
1 46
|
nfan |
|
48 |
|
nfcsb1v |
|
49 |
48
|
nfel1 |
|
50 |
47 49
|
nfim |
|
51 |
|
eleq1w |
|
52 |
51
|
anbi2d |
|
53 |
|
csbeq1a |
|
54 |
53
|
eleq1d |
|
55 |
52 54
|
imbi12d |
|
56 |
50 55 4
|
chvarfv |
|
57 |
43 45 56
|
syl2anc |
|
58 |
2
|
adantr |
|
59 |
|
mulexp |
|
60 |
42 57 58 59
|
syl3anc |
|
61 |
60
|
eqcomd |
|
62 |
61
|
adantr |
|
63 |
|
nfcv |
|
64 |
|
nfcv |
|
65 |
48 63 64
|
nfov |
|
66 |
44
|
eldifbd |
|
67 |
2
|
ad2antrr |
|
68 |
40 67
|
expcld |
|
69 |
68
|
adantlrr |
|
70 |
53
|
oveq1d |
|
71 |
57 58
|
expcld |
|
72 |
32 65 37 44 66 69 70 71
|
fprodsplitsn |
|
73 |
72
|
adantr |
|
74 |
|
oveq1 |
|
75 |
74
|
adantl |
|
76 |
73 75
|
eqtrd |
|
77 |
32 48 37 44 66 41 53 57
|
fprodsplitsn |
|
78 |
77
|
adantr |
|
79 |
78
|
oveq1d |
|
80 |
62 76 79
|
3eqtr4d |
|
81 |
80
|
ex |
|
82 |
8 12 16 20 30 81 3
|
findcard2d |
|