Metamath Proof Explorer


Theorem fprodf1o

Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017)

Ref Expression
Hypotheses fprodf1o.1 k = G B = D
fprodf1o.2 φ C Fin
fprodf1o.3 φ F : C 1-1 onto A
fprodf1o.4 φ n C F n = G
fprodf1o.5 φ k A B
Assertion fprodf1o φ k A B = n C D

Proof

Step Hyp Ref Expression
1 fprodf1o.1 k = G B = D
2 fprodf1o.2 φ C Fin
3 fprodf1o.3 φ F : C 1-1 onto A
4 fprodf1o.4 φ n C F n = G
5 fprodf1o.5 φ k A B
6 prod0 k B = 1
7 3 adantr φ C = F : C 1-1 onto A
8 f1oeq2 C = F : C 1-1 onto A F : 1-1 onto A
9 8 adantl φ C = F : C 1-1 onto A F : 1-1 onto A
10 7 9 mpbid φ C = F : 1-1 onto A
11 f1ofo F : 1-1 onto A F : onto A
12 10 11 syl φ C = F : onto A
13 fo00 F : onto A F = A =
14 13 simprbi F : onto A A =
15 12 14 syl φ C = A =
16 15 prodeq1d φ C = k A B = k B
17 prodeq1 C = n C D = n D
18 prod0 n D = 1
19 17 18 eqtrdi C = n C D = 1
20 19 adantl φ C = n C D = 1
21 6 16 20 3eqtr4a φ C = k A B = n C D
22 21 ex φ C = k A B = n C D
23 2fveq3 m = f n k A B F m = k A B F f n
24 simprl φ C f : 1 C 1-1 onto C C
25 simprr φ C f : 1 C 1-1 onto C f : 1 C 1-1 onto C
26 f1of F : C 1-1 onto A F : C A
27 3 26 syl φ F : C A
28 27 ffvelrnda φ m C F m A
29 5 fmpttd φ k A B : A
30 29 ffvelrnda φ F m A k A B F m
31 28 30 syldan φ m C k A B F m
32 31 adantlr φ C f : 1 C 1-1 onto C m C k A B F m
33 simpr C f : 1 C 1-1 onto C f : 1 C 1-1 onto C
34 f1oco F : C 1-1 onto A f : 1 C 1-1 onto C F f : 1 C 1-1 onto A
35 3 33 34 syl2an φ C f : 1 C 1-1 onto C F f : 1 C 1-1 onto A
36 f1of F f : 1 C 1-1 onto A F f : 1 C A
37 35 36 syl φ C f : 1 C 1-1 onto C F f : 1 C A
38 fvco3 F f : 1 C A n 1 C k A B F f n = k A B F f n
39 37 38 sylan φ C f : 1 C 1-1 onto C n 1 C k A B F f n = k A B F f n
40 f1of f : 1 C 1-1 onto C f : 1 C C
41 40 adantl C f : 1 C 1-1 onto C f : 1 C C
42 41 adantl φ C f : 1 C 1-1 onto C f : 1 C C
43 fvco3 f : 1 C C n 1 C F f n = F f n
44 42 43 sylan φ C f : 1 C 1-1 onto C n 1 C F f n = F f n
45 44 fveq2d φ C f : 1 C 1-1 onto C n 1 C k A B F f n = k A B F f n
46 39 45 eqtrd φ C f : 1 C 1-1 onto C n 1 C k A B F f n = k A B F f n
47 23 24 25 32 46 fprod φ C f : 1 C 1-1 onto C m C k A B F m = seq 1 × k A B F f C
48 27 ffvelrnda φ n C F n A
49 4 48 eqeltrrd φ n C G A
50 eqid k A B = k A B
51 1 50 fvmpti G A k A B G = I D
52 49 51 syl φ n C k A B G = I D
53 4 fveq2d φ n C k A B F n = k A B G
54 eqid n C D = n C D
55 54 fvmpt2i n C n C D n = I D
56 55 adantl φ n C n C D n = I D
57 52 53 56 3eqtr4rd φ n C n C D n = k A B F n
58 57 ralrimiva φ n C n C D n = k A B F n
59 nffvmpt1 _ n n C D m
60 59 nfeq1 n n C D m = k A B F m
61 fveq2 n = m n C D n = n C D m
62 2fveq3 n = m k A B F n = k A B F m
63 61 62 eqeq12d n = m n C D n = k A B F n n C D m = k A B F m
64 60 63 rspc m C n C n C D n = k A B F n n C D m = k A B F m
65 58 64 mpan9 φ m C n C D m = k A B F m
66 65 adantlr φ C f : 1 C 1-1 onto C m C n C D m = k A B F m
67 66 prodeq2dv φ C f : 1 C 1-1 onto C m C n C D m = m C k A B F m
68 fveq2 m = F f n k A B m = k A B F f n
69 29 adantr φ C f : 1 C 1-1 onto C k A B : A
70 69 ffvelrnda φ C f : 1 C 1-1 onto C m A k A B m
71 68 24 35 70 39 fprod φ C f : 1 C 1-1 onto C m A k A B m = seq 1 × k A B F f C
72 47 67 71 3eqtr4rd φ C f : 1 C 1-1 onto C m A k A B m = m C n C D m
73 prodfc m A k A B m = k A B
74 prodfc m C n C D m = n C D
75 72 73 74 3eqtr3g φ C f : 1 C 1-1 onto C k A B = n C D
76 75 expr φ C f : 1 C 1-1 onto C k A B = n C D
77 76 exlimdv φ C f f : 1 C 1-1 onto C k A B = n C D
78 77 expimpd φ C f f : 1 C 1-1 onto C k A B = n C D
79 fz1f1o C Fin C = C f f : 1 C 1-1 onto C
80 2 79 syl φ C = C f f : 1 C 1-1 onto C
81 22 78 80 mpjaod φ k A B = n C D