| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodf1o.1 |
|
| 2 |
|
fprodf1o.2 |
|
| 3 |
|
fprodf1o.3 |
|
| 4 |
|
fprodf1o.4 |
|
| 5 |
|
fprodf1o.5 |
|
| 6 |
|
prod0 |
|
| 7 |
3
|
adantr |
|
| 8 |
|
f1oeq2 |
|
| 9 |
8
|
adantl |
|
| 10 |
7 9
|
mpbid |
|
| 11 |
|
f1ofo |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
fo00 |
|
| 14 |
13
|
simprbi |
|
| 15 |
12 14
|
syl |
|
| 16 |
15
|
prodeq1d |
|
| 17 |
|
prodeq1 |
|
| 18 |
|
prod0 |
|
| 19 |
17 18
|
eqtrdi |
|
| 20 |
19
|
adantl |
|
| 21 |
6 16 20
|
3eqtr4a |
|
| 22 |
21
|
ex |
|
| 23 |
|
2fveq3 |
|
| 24 |
|
simprl |
|
| 25 |
|
simprr |
|
| 26 |
|
f1of |
|
| 27 |
3 26
|
syl |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
5
|
fmpttd |
|
| 30 |
29
|
ffvelcdmda |
|
| 31 |
28 30
|
syldan |
|
| 32 |
31
|
adantlr |
|
| 33 |
|
simpr |
|
| 34 |
|
f1oco |
|
| 35 |
3 33 34
|
syl2an |
|
| 36 |
|
f1of |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
fvco3 |
|
| 39 |
37 38
|
sylan |
|
| 40 |
|
f1of |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
adantl |
|
| 43 |
|
fvco3 |
|
| 44 |
42 43
|
sylan |
|
| 45 |
44
|
fveq2d |
|
| 46 |
39 45
|
eqtrd |
|
| 47 |
23 24 25 32 46
|
fprod |
|
| 48 |
27
|
ffvelcdmda |
|
| 49 |
4 48
|
eqeltrrd |
|
| 50 |
|
eqid |
|
| 51 |
1 50
|
fvmpti |
|
| 52 |
49 51
|
syl |
|
| 53 |
4
|
fveq2d |
|
| 54 |
|
eqid |
|
| 55 |
54
|
fvmpt2i |
|
| 56 |
55
|
adantl |
|
| 57 |
52 53 56
|
3eqtr4rd |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
|
nffvmpt1 |
|
| 60 |
59
|
nfeq1 |
|
| 61 |
|
fveq2 |
|
| 62 |
|
2fveq3 |
|
| 63 |
61 62
|
eqeq12d |
|
| 64 |
60 63
|
rspc |
|
| 65 |
58 64
|
mpan9 |
|
| 66 |
65
|
adantlr |
|
| 67 |
66
|
prodeq2dv |
|
| 68 |
|
fveq2 |
|
| 69 |
29
|
adantr |
|
| 70 |
69
|
ffvelcdmda |
|
| 71 |
68 24 35 70 39
|
fprod |
|
| 72 |
47 67 71
|
3eqtr4rd |
|
| 73 |
|
prodfc |
|
| 74 |
|
prodfc |
|
| 75 |
72 73 74
|
3eqtr3g |
|
| 76 |
75
|
expr |
|
| 77 |
76
|
exlimdv |
|
| 78 |
77
|
expimpd |
|
| 79 |
|
fz1f1o |
|
| 80 |
2 79
|
syl |
|
| 81 |
22 78 80
|
mpjaod |
|