Step |
Hyp |
Ref |
Expression |
1 |
|
fprodf1o.1 |
|
2 |
|
fprodf1o.2 |
|
3 |
|
fprodf1o.3 |
|
4 |
|
fprodf1o.4 |
|
5 |
|
fprodf1o.5 |
|
6 |
|
prod0 |
|
7 |
3
|
adantr |
|
8 |
|
f1oeq2 |
|
9 |
8
|
adantl |
|
10 |
7 9
|
mpbid |
|
11 |
|
f1ofo |
|
12 |
10 11
|
syl |
|
13 |
|
fo00 |
|
14 |
13
|
simprbi |
|
15 |
12 14
|
syl |
|
16 |
15
|
prodeq1d |
|
17 |
|
prodeq1 |
|
18 |
|
prod0 |
|
19 |
17 18
|
eqtrdi |
|
20 |
19
|
adantl |
|
21 |
6 16 20
|
3eqtr4a |
|
22 |
21
|
ex |
|
23 |
|
2fveq3 |
|
24 |
|
simprl |
|
25 |
|
simprr |
|
26 |
|
f1of |
|
27 |
3 26
|
syl |
|
28 |
27
|
ffvelrnda |
|
29 |
5
|
fmpttd |
|
30 |
29
|
ffvelrnda |
|
31 |
28 30
|
syldan |
|
32 |
31
|
adantlr |
|
33 |
|
simpr |
|
34 |
|
f1oco |
|
35 |
3 33 34
|
syl2an |
|
36 |
|
f1of |
|
37 |
35 36
|
syl |
|
38 |
|
fvco3 |
|
39 |
37 38
|
sylan |
|
40 |
|
f1of |
|
41 |
40
|
adantl |
|
42 |
41
|
adantl |
|
43 |
|
fvco3 |
|
44 |
42 43
|
sylan |
|
45 |
44
|
fveq2d |
|
46 |
39 45
|
eqtrd |
|
47 |
23 24 25 32 46
|
fprod |
|
48 |
27
|
ffvelrnda |
|
49 |
4 48
|
eqeltrrd |
|
50 |
|
eqid |
|
51 |
1 50
|
fvmpti |
|
52 |
49 51
|
syl |
|
53 |
4
|
fveq2d |
|
54 |
|
eqid |
|
55 |
54
|
fvmpt2i |
|
56 |
55
|
adantl |
|
57 |
52 53 56
|
3eqtr4rd |
|
58 |
57
|
ralrimiva |
|
59 |
|
nffvmpt1 |
|
60 |
59
|
nfeq1 |
|
61 |
|
fveq2 |
|
62 |
|
2fveq3 |
|
63 |
61 62
|
eqeq12d |
|
64 |
60 63
|
rspc |
|
65 |
58 64
|
mpan9 |
|
66 |
65
|
adantlr |
|
67 |
66
|
prodeq2dv |
|
68 |
|
fveq2 |
|
69 |
29
|
adantr |
|
70 |
69
|
ffvelrnda |
|
71 |
68 24 35 70 39
|
fprod |
|
72 |
47 67 71
|
3eqtr4rd |
|
73 |
|
prodfc |
|
74 |
|
prodfc |
|
75 |
72 73 74
|
3eqtr3g |
|
76 |
75
|
expr |
|
77 |
76
|
exlimdv |
|
78 |
77
|
expimpd |
|
79 |
|
fz1f1o |
|
80 |
2 79
|
syl |
|
81 |
22 78 80
|
mpjaod |
|