Metamath Proof Explorer


Theorem fprodfac

Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion fprodfac A 0 A ! = k = 1 A k

Proof

Step Hyp Ref Expression
1 elnn0 A 0 A A = 0
2 facnn A A ! = seq 1 × I A
3 vex k V
4 fvi k V I k = k
5 3 4 mp1i A k 1 A I k = k
6 elnnuz A A 1
7 6 biimpi A A 1
8 elfznn k 1 A k
9 8 nncnd k 1 A k
10 9 adantl A k 1 A k
11 5 7 10 fprodser A k = 1 A k = seq 1 × I A
12 2 11 eqtr4d A A ! = k = 1 A k
13 prod0 k k = 1
14 13 eqcomi 1 = k k
15 fveq2 A = 0 A ! = 0 !
16 fac0 0 ! = 1
17 15 16 eqtrdi A = 0 A ! = 1
18 oveq2 A = 0 1 A = 1 0
19 fz10 1 0 =
20 18 19 eqtrdi A = 0 1 A =
21 20 prodeq1d A = 0 k = 1 A k = k k
22 14 17 21 3eqtr4a A = 0 A ! = k = 1 A k
23 12 22 jaoi A A = 0 A ! = k = 1 A k
24 1 23 sylbi A 0 A ! = k = 1 A k