| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodfvdvdsd.a |  | 
						
							| 2 |  | fprodfvdvdsd.b |  | 
						
							| 3 |  | fprodfvdvdsd.f |  | 
						
							| 4 | 1 | adantr |  | 
						
							| 5 |  | diffi |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 3 | adantr |  | 
						
							| 8 | 2 | ssdifssd |  | 
						
							| 9 | 8 | sselda |  | 
						
							| 10 | 7 9 | ffvelcdmd |  | 
						
							| 11 | 10 | adantlr |  | 
						
							| 12 | 6 11 | fprodzcl |  | 
						
							| 13 | 3 | adantr |  | 
						
							| 14 | 2 | sselda |  | 
						
							| 15 | 13 14 | ffvelcdmd |  | 
						
							| 16 |  | dvdsmul2 |  | 
						
							| 17 | 12 15 16 | syl2anc |  | 
						
							| 18 | 17 | ralrimiva |  | 
						
							| 19 |  | neldifsnd |  | 
						
							| 20 |  | disjsn |  | 
						
							| 21 | 19 20 | sylibr |  | 
						
							| 22 |  | difsnid |  | 
						
							| 23 | 22 | eqcomd |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 | 13 | adantr |  | 
						
							| 26 | 2 | adantr |  | 
						
							| 27 | 26 | sselda |  | 
						
							| 28 | 25 27 | ffvelcdmd |  | 
						
							| 29 | 28 | zcnd |  | 
						
							| 30 | 21 24 4 29 | fprodsplit |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 15 | zcnd |  | 
						
							| 33 |  | fveq2 |  | 
						
							| 34 | 33 | prodsn |  | 
						
							| 35 | 31 32 34 | syl2anc |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 30 36 | eqtrd |  | 
						
							| 38 | 37 | breq2d |  | 
						
							| 39 | 38 | ralbidva |  | 
						
							| 40 | 18 39 | mpbird |  |