Step |
Hyp |
Ref |
Expression |
1 |
|
fprodfvdvdsd.a |
|
2 |
|
fprodfvdvdsd.b |
|
3 |
|
fprodfvdvdsd.f |
|
4 |
1
|
adantr |
|
5 |
|
diffi |
|
6 |
4 5
|
syl |
|
7 |
3
|
adantr |
|
8 |
2
|
ssdifssd |
|
9 |
8
|
sselda |
|
10 |
7 9
|
ffvelrnd |
|
11 |
10
|
adantlr |
|
12 |
6 11
|
fprodzcl |
|
13 |
3
|
adantr |
|
14 |
2
|
sselda |
|
15 |
13 14
|
ffvelrnd |
|
16 |
|
dvdsmul2 |
|
17 |
12 15 16
|
syl2anc |
|
18 |
17
|
ralrimiva |
|
19 |
|
neldifsnd |
|
20 |
|
disjsn |
|
21 |
19 20
|
sylibr |
|
22 |
|
difsnid |
|
23 |
22
|
eqcomd |
|
24 |
23
|
adantl |
|
25 |
13
|
adantr |
|
26 |
2
|
adantr |
|
27 |
26
|
sselda |
|
28 |
25 27
|
ffvelrnd |
|
29 |
28
|
zcnd |
|
30 |
21 24 4 29
|
fprodsplit |
|
31 |
|
simpr |
|
32 |
15
|
zcnd |
|
33 |
|
fveq2 |
|
34 |
33
|
prodsn |
|
35 |
31 32 34
|
syl2anc |
|
36 |
35
|
oveq2d |
|
37 |
30 36
|
eqtrd |
|
38 |
37
|
breq2d |
|
39 |
38
|
ralbidva |
|
40 |
18 39
|
mpbird |
|