Metamath Proof Explorer


Theorem fprodfvdvdsd

Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021)

Ref Expression
Hypotheses fprodfvdvdsd.a φ A Fin
fprodfvdvdsd.b φ A B
fprodfvdvdsd.f φ F : B
Assertion fprodfvdvdsd φ x A F x k A F k

Proof

Step Hyp Ref Expression
1 fprodfvdvdsd.a φ A Fin
2 fprodfvdvdsd.b φ A B
3 fprodfvdvdsd.f φ F : B
4 1 adantr φ x A A Fin
5 diffi A Fin A x Fin
6 4 5 syl φ x A A x Fin
7 3 adantr φ k A x F : B
8 2 ssdifssd φ A x B
9 8 sselda φ k A x k B
10 7 9 ffvelrnd φ k A x F k
11 10 adantlr φ x A k A x F k
12 6 11 fprodzcl φ x A k A x F k
13 3 adantr φ x A F : B
14 2 sselda φ x A x B
15 13 14 ffvelrnd φ x A F x
16 dvdsmul2 k A x F k F x F x k A x F k F x
17 12 15 16 syl2anc φ x A F x k A x F k F x
18 17 ralrimiva φ x A F x k A x F k F x
19 neldifsnd φ x A ¬ x A x
20 disjsn A x x = ¬ x A x
21 19 20 sylibr φ x A A x x =
22 difsnid x A A x x = A
23 22 eqcomd x A A = A x x
24 23 adantl φ x A A = A x x
25 13 adantr φ x A k A F : B
26 2 adantr φ x A A B
27 26 sselda φ x A k A k B
28 25 27 ffvelrnd φ x A k A F k
29 28 zcnd φ x A k A F k
30 21 24 4 29 fprodsplit φ x A k A F k = k A x F k k x F k
31 simpr φ x A x A
32 15 zcnd φ x A F x
33 fveq2 k = x F k = F x
34 33 prodsn x A F x k x F k = F x
35 31 32 34 syl2anc φ x A k x F k = F x
36 35 oveq2d φ x A k A x F k k x F k = k A x F k F x
37 30 36 eqtrd φ x A k A F k = k A x F k F x
38 37 breq2d φ x A F x k A F k F x k A x F k F x
39 38 ralbidva φ x A F x k A F k x A F x k A x F k F x
40 18 39 mpbird φ x A F x k A F k