Metamath Proof Explorer


Theorem fprodge0

Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodge0.kph k φ
fprodge0.a φ A Fin
fprodge0.b φ k A B
fprodge0.0leb φ k A 0 B
Assertion fprodge0 φ 0 k A B

Proof

Step Hyp Ref Expression
1 fprodge0.kph k φ
2 fprodge0.a φ A Fin
3 fprodge0.b φ k A B
4 fprodge0.0leb φ k A 0 B
5 0xr 0 *
6 pnfxr +∞ *
7 rge0ssre 0 +∞
8 ax-resscn
9 7 8 sstri 0 +∞
10 9 a1i φ 0 +∞
11 ge0mulcl x 0 +∞ y 0 +∞ x y 0 +∞
12 11 adantl φ x 0 +∞ y 0 +∞ x y 0 +∞
13 elrege0 B 0 +∞ B 0 B
14 3 4 13 sylanbrc φ k A B 0 +∞
15 1re 1
16 0le1 0 1
17 ltpnf 1 1 < +∞
18 15 17 ax-mp 1 < +∞
19 0re 0
20 elico2 0 +∞ * 1 0 +∞ 1 0 1 1 < +∞
21 19 6 20 mp2an 1 0 +∞ 1 0 1 1 < +∞
22 15 16 18 21 mpbir3an 1 0 +∞
23 22 a1i φ 1 0 +∞
24 1 10 12 2 14 23 fprodcllemf φ k A B 0 +∞
25 icogelb 0 * +∞ * k A B 0 +∞ 0 k A B
26 5 6 24 25 mp3an12i φ 0 k A B