Metamath Proof Explorer


Theorem fprodge1

Description: If all of the terms of a finite product are greater than or equal to 1 , so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodge1.ph k φ
fprodge1.a φ A Fin
fprodge1.b φ k A B
fprodge1.ge φ k A 1 B
Assertion fprodge1 φ 1 k A B

Proof

Step Hyp Ref Expression
1 fprodge1.ph k φ
2 fprodge1.a φ A Fin
3 fprodge1.b φ k A B
4 fprodge1.ge φ k A 1 B
5 1xr 1 *
6 pnfxr +∞ *
7 1re 1
8 icossre 1 +∞ * 1 +∞
9 7 6 8 mp2an 1 +∞
10 ax-resscn
11 9 10 sstri 1 +∞
12 11 a1i φ 1 +∞
13 5 a1i x 1 +∞ y 1 +∞ 1 *
14 6 a1i x 1 +∞ y 1 +∞ +∞ *
15 9 sseli x 1 +∞ x
16 15 adantr x 1 +∞ y 1 +∞ x
17 9 sseli y 1 +∞ y
18 17 adantl x 1 +∞ y 1 +∞ y
19 16 18 remulcld x 1 +∞ y 1 +∞ x y
20 19 rexrd x 1 +∞ y 1 +∞ x y *
21 1t1e1 1 1 = 1
22 7 a1i x 1 +∞ y 1 +∞ 1
23 0le1 0 1
24 23 a1i x 1 +∞ y 1 +∞ 0 1
25 icogelb 1 * +∞ * x 1 +∞ 1 x
26 5 6 25 mp3an12 x 1 +∞ 1 x
27 26 adantr x 1 +∞ y 1 +∞ 1 x
28 icogelb 1 * +∞ * y 1 +∞ 1 y
29 5 6 28 mp3an12 y 1 +∞ 1 y
30 29 adantl x 1 +∞ y 1 +∞ 1 y
31 22 16 22 18 24 24 27 30 lemul12ad x 1 +∞ y 1 +∞ 1 1 x y
32 21 31 eqbrtrrid x 1 +∞ y 1 +∞ 1 x y
33 19 ltpnfd x 1 +∞ y 1 +∞ x y < +∞
34 13 14 20 32 33 elicod x 1 +∞ y 1 +∞ x y 1 +∞
35 34 adantl φ x 1 +∞ y 1 +∞ x y 1 +∞
36 5 a1i φ k A 1 *
37 6 a1i φ k A +∞ *
38 3 rexrd φ k A B *
39 3 ltpnfd φ k A B < +∞
40 36 37 38 4 39 elicod φ k A B 1 +∞
41 1le1 1 1
42 ltpnf 1 1 < +∞
43 7 42 ax-mp 1 < +∞
44 elico2 1 +∞ * 1 1 +∞ 1 1 1 1 < +∞
45 7 6 44 mp2an 1 1 +∞ 1 1 1 1 < +∞
46 7 41 43 45 mpbir3an 1 1 +∞
47 46 a1i φ 1 1 +∞
48 1 12 35 2 40 47 fprodcllemf φ k A B 1 +∞
49 icogelb 1 * +∞ * k A B 1 +∞ 1 k A B
50 5 6 48 49 mp3an12i φ 1 k A B