| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodm1.1 |
|
| 2 |
|
fprodm1.2 |
|
| 3 |
|
fprodm1.3 |
|
| 4 |
|
fzp1nel |
|
| 5 |
|
eluzelz |
|
| 6 |
1 5
|
syl |
|
| 7 |
6
|
zcnd |
|
| 8 |
|
1cnd |
|
| 9 |
7 8
|
npcand |
|
| 10 |
9
|
eleq1d |
|
| 11 |
4 10
|
mtbii |
|
| 12 |
|
disjsn |
|
| 13 |
11 12
|
sylibr |
|
| 14 |
|
eluzel2 |
|
| 15 |
1 14
|
syl |
|
| 16 |
|
peano2zm |
|
| 17 |
15 16
|
syl |
|
| 18 |
15
|
zcnd |
|
| 19 |
18 8
|
npcand |
|
| 20 |
19
|
fveq2d |
|
| 21 |
1 20
|
eleqtrrd |
|
| 22 |
|
eluzp1m1 |
|
| 23 |
17 21 22
|
syl2anc |
|
| 24 |
|
fzsuc2 |
|
| 25 |
15 23 24
|
syl2anc |
|
| 26 |
9
|
oveq2d |
|
| 27 |
9
|
sneqd |
|
| 28 |
27
|
uneq2d |
|
| 29 |
25 26 28
|
3eqtr3d |
|
| 30 |
|
fzfid |
|
| 31 |
13 29 30 2
|
fprodsplit |
|
| 32 |
3
|
eleq1d |
|
| 33 |
2
|
ralrimiva |
|
| 34 |
|
eluzfz2 |
|
| 35 |
1 34
|
syl |
|
| 36 |
32 33 35
|
rspcdva |
|
| 37 |
3
|
prodsn |
|
| 38 |
1 36 37
|
syl2anc |
|
| 39 |
38
|
oveq2d |
|
| 40 |
31 39
|
eqtrd |
|