Step |
Hyp |
Ref |
Expression |
1 |
|
fprodmodd.a |
|
2 |
|
fprodmodd.b |
|
3 |
|
fprodmodd.c |
|
4 |
|
fprodmodd.m |
|
5 |
|
fprodmodd.p |
|
6 |
|
prodeq1 |
|
7 |
6
|
oveq1d |
|
8 |
|
prodeq1 |
|
9 |
8
|
oveq1d |
|
10 |
7 9
|
eqeq12d |
|
11 |
|
prodeq1 |
|
12 |
11
|
oveq1d |
|
13 |
|
prodeq1 |
|
14 |
13
|
oveq1d |
|
15 |
12 14
|
eqeq12d |
|
16 |
|
prodeq1 |
|
17 |
16
|
oveq1d |
|
18 |
|
prodeq1 |
|
19 |
18
|
oveq1d |
|
20 |
17 19
|
eqeq12d |
|
21 |
|
prodeq1 |
|
22 |
21
|
oveq1d |
|
23 |
|
prodeq1 |
|
24 |
23
|
oveq1d |
|
25 |
22 24
|
eqeq12d |
|
26 |
|
prod0 |
|
27 |
26
|
a1i |
|
28 |
27
|
oveq1d |
|
29 |
|
prod0 |
|
30 |
29
|
eqcomi |
|
31 |
30
|
oveq1i |
|
32 |
28 31
|
eqtrdi |
|
33 |
|
nfv |
|
34 |
|
nfcsb1v |
|
35 |
|
ssfi |
|
36 |
35
|
ex |
|
37 |
36 1
|
syl11 |
|
38 |
37
|
adantr |
|
39 |
38
|
impcom |
|
40 |
|
simpr |
|
41 |
40
|
adantl |
|
42 |
|
eldifn |
|
43 |
42
|
adantl |
|
44 |
43
|
adantl |
|
45 |
|
simpll |
|
46 |
|
ssel |
|
47 |
46
|
adantr |
|
48 |
47
|
adantl |
|
49 |
48
|
imp |
|
50 |
45 49 2
|
syl2anc |
|
51 |
50
|
zcnd |
|
52 |
|
csbeq1a |
|
53 |
|
eldifi |
|
54 |
53
|
adantl |
|
55 |
2
|
ralrimiva |
|
56 |
|
rspcsbela |
|
57 |
54 55 56
|
syl2anr |
|
58 |
57
|
zcnd |
|
59 |
33 34 39 41 44 51 52 58
|
fprodsplitsn |
|
60 |
59
|
oveq1d |
|
61 |
60
|
adantr |
|
62 |
39 50
|
fprodzcl |
|
63 |
62
|
adantr |
|
64 |
45 49 3
|
syl2anc |
|
65 |
39 64
|
fprodzcl |
|
66 |
65
|
adantr |
|
67 |
57
|
adantr |
|
68 |
3
|
ralrimiva |
|
69 |
|
rspcsbela |
|
70 |
54 68 69
|
syl2anr |
|
71 |
70
|
adantr |
|
72 |
4
|
nnrpd |
|
73 |
72
|
adantr |
|
74 |
73
|
adantr |
|
75 |
|
simpr |
|
76 |
5
|
ralrimiva |
|
77 |
|
rspsbca |
|
78 |
54 76 77
|
syl2anr |
|
79 |
|
vex |
|
80 |
|
sbceqg |
|
81 |
79 80
|
mp1i |
|
82 |
78 81
|
mpbid |
|
83 |
|
csbov1g |
|
84 |
83
|
elv |
|
85 |
|
csbov1g |
|
86 |
85
|
elv |
|
87 |
82 84 86
|
3eqtr3g |
|
88 |
87
|
adantr |
|
89 |
63 66 67 71 74 75 88
|
modmul12d |
|
90 |
|
nfcsb1v |
|
91 |
64
|
zcnd |
|
92 |
|
csbeq1a |
|
93 |
70
|
zcnd |
|
94 |
33 90 39 41 44 91 92 93
|
fprodsplitsn |
|
95 |
94
|
oveq1d |
|
96 |
95
|
eqcomd |
|
97 |
96
|
adantr |
|
98 |
61 89 97
|
3eqtrd |
|
99 |
98
|
ex |
|
100 |
10 15 20 25 32 99 1
|
findcard2d |
|