Metamath Proof Explorer


Theorem fprodmul

Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodmul.1 φ A Fin
fprodmul.2 φ k A B
fprodmul.3 φ k A C
Assertion fprodmul φ k A B C = k A B k A C

Proof

Step Hyp Ref Expression
1 fprodmul.1 φ A Fin
2 fprodmul.2 φ k A B
3 fprodmul.3 φ k A C
4 1t1e1 1 1 = 1
5 prod0 k B = 1
6 prod0 k C = 1
7 5 6 oveq12i k B k C = 1 1
8 prod0 k B C = 1
9 4 7 8 3eqtr4ri k B C = k B k C
10 prodeq1 A = k A B C = k B C
11 prodeq1 A = k A B = k B
12 prodeq1 A = k A C = k C
13 11 12 oveq12d A = k A B k A C = k B k C
14 9 10 13 3eqtr4a A = k A B C = k A B k A C
15 14 a1i φ A = k A B C = k A B k A C
16 simprl φ A f : 1 A 1-1 onto A A
17 nnuz = 1
18 16 17 eleqtrdi φ A f : 1 A 1-1 onto A A 1
19 2 fmpttd φ k A B : A
20 19 adantr φ A f : 1 A 1-1 onto A k A B : A
21 f1of f : 1 A 1-1 onto A f : 1 A A
22 21 ad2antll φ A f : 1 A 1-1 onto A f : 1 A A
23 fco k A B : A f : 1 A A k A B f : 1 A
24 20 22 23 syl2anc φ A f : 1 A 1-1 onto A k A B f : 1 A
25 24 ffvelrnda φ A f : 1 A 1-1 onto A n 1 A k A B f n
26 3 fmpttd φ k A C : A
27 26 adantr φ A f : 1 A 1-1 onto A k A C : A
28 fco k A C : A f : 1 A A k A C f : 1 A
29 27 22 28 syl2anc φ A f : 1 A 1-1 onto A k A C f : 1 A
30 29 ffvelrnda φ A f : 1 A 1-1 onto A n 1 A k A C f n
31 22 ffvelrnda φ A f : 1 A 1-1 onto A n 1 A f n A
32 simpr φ k A k A
33 2 3 mulcld φ k A B C
34 eqid k A B C = k A B C
35 34 fvmpt2 k A B C k A B C k = B C
36 32 33 35 syl2anc φ k A k A B C k = B C
37 eqid k A B = k A B
38 37 fvmpt2 k A B k A B k = B
39 32 2 38 syl2anc φ k A k A B k = B
40 eqid k A C = k A C
41 40 fvmpt2 k A C k A C k = C
42 32 3 41 syl2anc φ k A k A C k = C
43 39 42 oveq12d φ k A k A B k k A C k = B C
44 36 43 eqtr4d φ k A k A B C k = k A B k k A C k
45 44 ralrimiva φ k A k A B C k = k A B k k A C k
46 45 ad2antrr φ A f : 1 A 1-1 onto A n 1 A k A k A B C k = k A B k k A C k
47 nffvmpt1 _ k k A B C f n
48 nffvmpt1 _ k k A B f n
49 nfcv _ k ×
50 nffvmpt1 _ k k A C f n
51 48 49 50 nfov _ k k A B f n k A C f n
52 47 51 nfeq k k A B C f n = k A B f n k A C f n
53 fveq2 k = f n k A B C k = k A B C f n
54 fveq2 k = f n k A B k = k A B f n
55 fveq2 k = f n k A C k = k A C f n
56 54 55 oveq12d k = f n k A B k k A C k = k A B f n k A C f n
57 53 56 eqeq12d k = f n k A B C k = k A B k k A C k k A B C f n = k A B f n k A C f n
58 52 57 rspc f n A k A k A B C k = k A B k k A C k k A B C f n = k A B f n k A C f n
59 31 46 58 sylc φ A f : 1 A 1-1 onto A n 1 A k A B C f n = k A B f n k A C f n
60 fvco3 f : 1 A A n 1 A k A B C f n = k A B C f n
61 22 60 sylan φ A f : 1 A 1-1 onto A n 1 A k A B C f n = k A B C f n
62 fvco3 f : 1 A A n 1 A k A B f n = k A B f n
63 22 62 sylan φ A f : 1 A 1-1 onto A n 1 A k A B f n = k A B f n
64 fvco3 f : 1 A A n 1 A k A C f n = k A C f n
65 22 64 sylan φ A f : 1 A 1-1 onto A n 1 A k A C f n = k A C f n
66 63 65 oveq12d φ A f : 1 A 1-1 onto A n 1 A k A B f n k A C f n = k A B f n k A C f n
67 59 61 66 3eqtr4d φ A f : 1 A 1-1 onto A n 1 A k A B C f n = k A B f n k A C f n
68 18 25 30 67 prodfmul φ A f : 1 A 1-1 onto A seq 1 × k A B C f A = seq 1 × k A B f A seq 1 × k A C f A
69 fveq2 m = f n k A B C m = k A B C f n
70 simprr φ A f : 1 A 1-1 onto A f : 1 A 1-1 onto A
71 33 fmpttd φ k A B C : A
72 71 adantr φ A f : 1 A 1-1 onto A k A B C : A
73 72 ffvelrnda φ A f : 1 A 1-1 onto A m A k A B C m
74 69 16 70 73 61 fprod φ A f : 1 A 1-1 onto A m A k A B C m = seq 1 × k A B C f A
75 fveq2 m = f n k A B m = k A B f n
76 20 ffvelrnda φ A f : 1 A 1-1 onto A m A k A B m
77 75 16 70 76 63 fprod φ A f : 1 A 1-1 onto A m A k A B m = seq 1 × k A B f A
78 fveq2 m = f n k A C m = k A C f n
79 27 ffvelrnda φ A f : 1 A 1-1 onto A m A k A C m
80 78 16 70 79 65 fprod φ A f : 1 A 1-1 onto A m A k A C m = seq 1 × k A C f A
81 77 80 oveq12d φ A f : 1 A 1-1 onto A m A k A B m m A k A C m = seq 1 × k A B f A seq 1 × k A C f A
82 68 74 81 3eqtr4d φ A f : 1 A 1-1 onto A m A k A B C m = m A k A B m m A k A C m
83 prodfc m A k A B C m = k A B C
84 prodfc m A k A B m = k A B
85 prodfc m A k A C m = k A C
86 84 85 oveq12i m A k A B m m A k A C m = k A B k A C
87 82 83 86 3eqtr3g φ A f : 1 A 1-1 onto A k A B C = k A B k A C
88 87 expr φ A f : 1 A 1-1 onto A k A B C = k A B k A C
89 88 exlimdv φ A f f : 1 A 1-1 onto A k A B C = k A B k A C
90 89 expimpd φ A f f : 1 A 1-1 onto A k A B C = k A B k A C
91 fz1f1o A Fin A = A f f : 1 A 1-1 onto A
92 1 91 syl φ A = A f f : 1 A 1-1 onto A
93 15 90 92 mpjaod φ k A B C = k A B k A C