Step |
Hyp |
Ref |
Expression |
1 |
|
fprodmul.1 |
|
2 |
|
fprodmul.2 |
|
3 |
|
fprodmul.3 |
|
4 |
|
1t1e1 |
|
5 |
|
prod0 |
|
6 |
|
prod0 |
|
7 |
5 6
|
oveq12i |
|
8 |
|
prod0 |
|
9 |
4 7 8
|
3eqtr4ri |
|
10 |
|
prodeq1 |
|
11 |
|
prodeq1 |
|
12 |
|
prodeq1 |
|
13 |
11 12
|
oveq12d |
|
14 |
9 10 13
|
3eqtr4a |
|
15 |
14
|
a1i |
|
16 |
|
simprl |
|
17 |
|
nnuz |
|
18 |
16 17
|
eleqtrdi |
|
19 |
2
|
fmpttd |
|
20 |
19
|
adantr |
|
21 |
|
f1of |
|
22 |
21
|
ad2antll |
|
23 |
|
fco |
|
24 |
20 22 23
|
syl2anc |
|
25 |
24
|
ffvelrnda |
|
26 |
3
|
fmpttd |
|
27 |
26
|
adantr |
|
28 |
|
fco |
|
29 |
27 22 28
|
syl2anc |
|
30 |
29
|
ffvelrnda |
|
31 |
22
|
ffvelrnda |
|
32 |
|
simpr |
|
33 |
2 3
|
mulcld |
|
34 |
|
eqid |
|
35 |
34
|
fvmpt2 |
|
36 |
32 33 35
|
syl2anc |
|
37 |
|
eqid |
|
38 |
37
|
fvmpt2 |
|
39 |
32 2 38
|
syl2anc |
|
40 |
|
eqid |
|
41 |
40
|
fvmpt2 |
|
42 |
32 3 41
|
syl2anc |
|
43 |
39 42
|
oveq12d |
|
44 |
36 43
|
eqtr4d |
|
45 |
44
|
ralrimiva |
|
46 |
45
|
ad2antrr |
|
47 |
|
nffvmpt1 |
|
48 |
|
nffvmpt1 |
|
49 |
|
nfcv |
|
50 |
|
nffvmpt1 |
|
51 |
48 49 50
|
nfov |
|
52 |
47 51
|
nfeq |
|
53 |
|
fveq2 |
|
54 |
|
fveq2 |
|
55 |
|
fveq2 |
|
56 |
54 55
|
oveq12d |
|
57 |
53 56
|
eqeq12d |
|
58 |
52 57
|
rspc |
|
59 |
31 46 58
|
sylc |
|
60 |
|
fvco3 |
|
61 |
22 60
|
sylan |
|
62 |
|
fvco3 |
|
63 |
22 62
|
sylan |
|
64 |
|
fvco3 |
|
65 |
22 64
|
sylan |
|
66 |
63 65
|
oveq12d |
|
67 |
59 61 66
|
3eqtr4d |
|
68 |
18 25 30 67
|
prodfmul |
|
69 |
|
fveq2 |
|
70 |
|
simprr |
|
71 |
33
|
fmpttd |
|
72 |
71
|
adantr |
|
73 |
72
|
ffvelrnda |
|
74 |
69 16 70 73 61
|
fprod |
|
75 |
|
fveq2 |
|
76 |
20
|
ffvelrnda |
|
77 |
75 16 70 76 63
|
fprod |
|
78 |
|
fveq2 |
|
79 |
27
|
ffvelrnda |
|
80 |
78 16 70 79 65
|
fprod |
|
81 |
77 80
|
oveq12d |
|
82 |
68 74 81
|
3eqtr4d |
|
83 |
|
prodfc |
|
84 |
|
prodfc |
|
85 |
|
prodfc |
|
86 |
84 85
|
oveq12i |
|
87 |
82 83 86
|
3eqtr3g |
|
88 |
87
|
expr |
|
89 |
88
|
exlimdv |
|
90 |
89
|
expimpd |
|
91 |
|
fz1f1o |
|
92 |
1 91
|
syl |
|
93 |
15 90 92
|
mpjaod |
|