Step |
Hyp |
Ref |
Expression |
1 |
|
fprodn0.1 |
|
2 |
|
fprodn0.2 |
|
3 |
|
fprodn0.3 |
|
4 |
|
prodeq1 |
|
5 |
|
prod0 |
|
6 |
4 5
|
eqtrdi |
|
7 |
|
ax-1ne0 |
|
8 |
7
|
a1i |
|
9 |
6 8
|
eqnetrd |
|
10 |
9
|
a1i |
|
11 |
|
prodfc |
|
12 |
|
fveq2 |
|
13 |
|
simprl |
|
14 |
|
simprr |
|
15 |
2
|
fmpttd |
|
16 |
15
|
adantr |
|
17 |
16
|
ffvelrnda |
|
18 |
|
f1of |
|
19 |
14 18
|
syl |
|
20 |
|
fvco3 |
|
21 |
19 20
|
sylan |
|
22 |
12 13 14 17 21
|
fprod |
|
23 |
11 22
|
eqtr3id |
|
24 |
|
nnuz |
|
25 |
13 24
|
eleqtrdi |
|
26 |
|
fco |
|
27 |
16 19 26
|
syl2anc |
|
28 |
27
|
ffvelrnda |
|
29 |
|
fvco3 |
|
30 |
19 29
|
sylan |
|
31 |
18
|
ffvelrnda |
|
32 |
31
|
adantll |
|
33 |
|
simpr |
|
34 |
|
nfcv |
|
35 |
|
nfv |
|
36 |
|
nfcsb1v |
|
37 |
36
|
nfel1 |
|
38 |
35 37
|
nfim |
|
39 |
|
csbeq1a |
|
40 |
39
|
eleq1d |
|
41 |
40
|
imbi2d |
|
42 |
2
|
expcom |
|
43 |
34 38 41 42
|
vtoclgaf |
|
44 |
43
|
impcom |
|
45 |
|
eqid |
|
46 |
45
|
fvmpts |
|
47 |
33 44 46
|
syl2anc |
|
48 |
|
nfcv |
|
49 |
36 48
|
nfne |
|
50 |
35 49
|
nfim |
|
51 |
39
|
neeq1d |
|
52 |
51
|
imbi2d |
|
53 |
3
|
expcom |
|
54 |
34 50 52 53
|
vtoclgaf |
|
55 |
54
|
impcom |
|
56 |
47 55
|
eqnetrd |
|
57 |
32 56
|
sylan2 |
|
58 |
57
|
anassrs |
|
59 |
30 58
|
eqnetrd |
|
60 |
25 28 59
|
prodfn0 |
|
61 |
23 60
|
eqnetrd |
|
62 |
61
|
expr |
|
63 |
62
|
exlimdv |
|
64 |
63
|
expimpd |
|
65 |
|
fz1f1o |
|
66 |
1 65
|
syl |
|
67 |
10 64 66
|
mpjaod |
|