| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodn0.1 |
|
| 2 |
|
fprodn0.2 |
|
| 3 |
|
fprodn0.3 |
|
| 4 |
|
prodeq1 |
|
| 5 |
|
prod0 |
|
| 6 |
4 5
|
eqtrdi |
|
| 7 |
|
ax-1ne0 |
|
| 8 |
7
|
a1i |
|
| 9 |
6 8
|
eqnetrd |
|
| 10 |
9
|
a1i |
|
| 11 |
|
prodfc |
|
| 12 |
|
fveq2 |
|
| 13 |
|
simprl |
|
| 14 |
|
simprr |
|
| 15 |
2
|
fmpttd |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
ffvelcdmda |
|
| 18 |
|
f1of |
|
| 19 |
14 18
|
syl |
|
| 20 |
|
fvco3 |
|
| 21 |
19 20
|
sylan |
|
| 22 |
12 13 14 17 21
|
fprod |
|
| 23 |
11 22
|
eqtr3id |
|
| 24 |
|
nnuz |
|
| 25 |
13 24
|
eleqtrdi |
|
| 26 |
|
fco |
|
| 27 |
16 19 26
|
syl2anc |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
|
fvco3 |
|
| 30 |
19 29
|
sylan |
|
| 31 |
18
|
ffvelcdmda |
|
| 32 |
31
|
adantll |
|
| 33 |
|
simpr |
|
| 34 |
|
nfcv |
|
| 35 |
|
nfv |
|
| 36 |
|
nfcsb1v |
|
| 37 |
36
|
nfel1 |
|
| 38 |
35 37
|
nfim |
|
| 39 |
|
csbeq1a |
|
| 40 |
39
|
eleq1d |
|
| 41 |
40
|
imbi2d |
|
| 42 |
2
|
expcom |
|
| 43 |
34 38 41 42
|
vtoclgaf |
|
| 44 |
43
|
impcom |
|
| 45 |
|
eqid |
|
| 46 |
45
|
fvmpts |
|
| 47 |
33 44 46
|
syl2anc |
|
| 48 |
|
nfcv |
|
| 49 |
36 48
|
nfne |
|
| 50 |
35 49
|
nfim |
|
| 51 |
39
|
neeq1d |
|
| 52 |
51
|
imbi2d |
|
| 53 |
3
|
expcom |
|
| 54 |
34 50 52 53
|
vtoclgaf |
|
| 55 |
54
|
impcom |
|
| 56 |
47 55
|
eqnetrd |
|
| 57 |
32 56
|
sylan2 |
|
| 58 |
57
|
anassrs |
|
| 59 |
30 58
|
eqnetrd |
|
| 60 |
25 28 59
|
prodfn0 |
|
| 61 |
23 60
|
eqnetrd |
|
| 62 |
61
|
expr |
|
| 63 |
62
|
exlimdv |
|
| 64 |
63
|
expimpd |
|
| 65 |
|
fz1f1o |
|
| 66 |
1 65
|
syl |
|
| 67 |
10 64 66
|
mpjaod |
|