Metamath Proof Explorer


Theorem fprodn0

Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Hypotheses fprodn0.1 φ A Fin
fprodn0.2 φ k A B
fprodn0.3 φ k A B 0
Assertion fprodn0 φ k A B 0

Proof

Step Hyp Ref Expression
1 fprodn0.1 φ A Fin
2 fprodn0.2 φ k A B
3 fprodn0.3 φ k A B 0
4 prodeq1 A = k A B = k B
5 prod0 k B = 1
6 4 5 eqtrdi A = k A B = 1
7 ax-1ne0 1 0
8 7 a1i A = 1 0
9 6 8 eqnetrd A = k A B 0
10 9 a1i φ A = k A B 0
11 prodfc m A k A B m = k A B
12 fveq2 m = f n k A B m = k A B f n
13 simprl φ A f : 1 A 1-1 onto A A
14 simprr φ A f : 1 A 1-1 onto A f : 1 A 1-1 onto A
15 2 fmpttd φ k A B : A
16 15 adantr φ A f : 1 A 1-1 onto A k A B : A
17 16 ffvelrnda φ A f : 1 A 1-1 onto A m A k A B m
18 f1of f : 1 A 1-1 onto A f : 1 A A
19 14 18 syl φ A f : 1 A 1-1 onto A f : 1 A A
20 fvco3 f : 1 A A n 1 A k A B f n = k A B f n
21 19 20 sylan φ A f : 1 A 1-1 onto A n 1 A k A B f n = k A B f n
22 12 13 14 17 21 fprod φ A f : 1 A 1-1 onto A m A k A B m = seq 1 × k A B f A
23 11 22 eqtr3id φ A f : 1 A 1-1 onto A k A B = seq 1 × k A B f A
24 nnuz = 1
25 13 24 eleqtrdi φ A f : 1 A 1-1 onto A A 1
26 fco k A B : A f : 1 A A k A B f : 1 A
27 16 19 26 syl2anc φ A f : 1 A 1-1 onto A k A B f : 1 A
28 27 ffvelrnda φ A f : 1 A 1-1 onto A m 1 A k A B f m
29 fvco3 f : 1 A A m 1 A k A B f m = k A B f m
30 19 29 sylan φ A f : 1 A 1-1 onto A m 1 A k A B f m = k A B f m
31 18 ffvelrnda f : 1 A 1-1 onto A m 1 A f m A
32 31 adantll A f : 1 A 1-1 onto A m 1 A f m A
33 simpr φ f m A f m A
34 nfcv _ k f m
35 nfv k φ
36 nfcsb1v _ k f m / k B
37 36 nfel1 k f m / k B
38 35 37 nfim k φ f m / k B
39 csbeq1a k = f m B = f m / k B
40 39 eleq1d k = f m B f m / k B
41 40 imbi2d k = f m φ B φ f m / k B
42 2 expcom k A φ B
43 34 38 41 42 vtoclgaf f m A φ f m / k B
44 43 impcom φ f m A f m / k B
45 eqid k A B = k A B
46 45 fvmpts f m A f m / k B k A B f m = f m / k B
47 33 44 46 syl2anc φ f m A k A B f m = f m / k B
48 nfcv _ k 0
49 36 48 nfne k f m / k B 0
50 35 49 nfim k φ f m / k B 0
51 39 neeq1d k = f m B 0 f m / k B 0
52 51 imbi2d k = f m φ B 0 φ f m / k B 0
53 3 expcom k A φ B 0
54 34 50 52 53 vtoclgaf f m A φ f m / k B 0
55 54 impcom φ f m A f m / k B 0
56 47 55 eqnetrd φ f m A k A B f m 0
57 32 56 sylan2 φ A f : 1 A 1-1 onto A m 1 A k A B f m 0
58 57 anassrs φ A f : 1 A 1-1 onto A m 1 A k A B f m 0
59 30 58 eqnetrd φ A f : 1 A 1-1 onto A m 1 A k A B f m 0
60 25 28 59 prodfn0 φ A f : 1 A 1-1 onto A seq 1 × k A B f A 0
61 23 60 eqnetrd φ A f : 1 A 1-1 onto A k A B 0
62 61 expr φ A f : 1 A 1-1 onto A k A B 0
63 62 exlimdv φ A f f : 1 A 1-1 onto A k A B 0
64 63 expimpd φ A f f : 1 A 1-1 onto A k A B 0
65 fz1f1o A Fin A = A f f : 1 A 1-1 onto A
66 1 65 syl φ A = A f f : 1 A 1-1 onto A
67 10 64 66 mpjaod φ k A B 0