Metamath Proof Explorer


Theorem fprodnn0cl

Description: Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 φ A Fin
fprodnn0cl.2 φ k A B 0
Assertion fprodnn0cl φ k A B 0

Proof

Step Hyp Ref Expression
1 fprodcl.1 φ A Fin
2 fprodnn0cl.2 φ k A B 0
3 nn0sscn 0
4 3 a1i φ 0
5 nn0mulcl x 0 y 0 x y 0
6 5 adantl φ x 0 y 0 x y 0
7 1nn0 1 0
8 7 a1i φ 1 0
9 4 6 1 2 8 fprodcllem φ k A B 0