Metamath Proof Explorer


Theorem fprodnncl

Description: Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 φ A Fin
fprodnncl.2 φ k A B
Assertion fprodnncl φ k A B

Proof

Step Hyp Ref Expression
1 fprodcl.1 φ A Fin
2 fprodnncl.2 φ k A B
3 nnsscn
4 3 a1i φ
5 nnmulcl x y x y
6 5 adantl φ x y x y
7 1nn 1
8 7 a1i φ 1
9 4 6 1 2 8 fprodcllem φ k A B