| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodntriv.1 |
|
| 2 |
|
fprodntriv.2 |
|
| 3 |
|
fprodntriv.3 |
|
| 4 |
2 1
|
eleqtrdi |
|
| 5 |
|
peano2uz |
|
| 6 |
4 5
|
syl |
|
| 7 |
6 1
|
eleqtrrdi |
|
| 8 |
|
ax-1ne0 |
|
| 9 |
|
eqid |
|
| 10 |
|
eluzelz |
|
| 11 |
10 1
|
eleq2s |
|
| 12 |
2 11
|
syl |
|
| 13 |
12
|
peano2zd |
|
| 14 |
|
seqex |
|
| 15 |
14
|
a1i |
|
| 16 |
|
1cnd |
|
| 17 |
|
simpr |
|
| 18 |
3
|
ad2antrr |
|
| 19 |
12
|
ad2antrr |
|
| 20 |
19
|
zred |
|
| 21 |
19
|
peano2zd |
|
| 22 |
21
|
zred |
|
| 23 |
|
elfzelz |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
zred |
|
| 26 |
20
|
ltp1d |
|
| 27 |
|
elfzle1 |
|
| 28 |
27
|
adantl |
|
| 29 |
20 22 25 26 28
|
ltletrd |
|
| 30 |
20 25
|
ltnled |
|
| 31 |
29 30
|
mpbid |
|
| 32 |
31
|
intnand |
|
| 33 |
32
|
intnand |
|
| 34 |
|
elfz2 |
|
| 35 |
33 34
|
sylnibr |
|
| 36 |
18 35
|
ssneldd |
|
| 37 |
36
|
iffalsed |
|
| 38 |
|
fzssuz |
|
| 39 |
6
|
adantr |
|
| 40 |
|
uzss |
|
| 41 |
39 40
|
syl |
|
| 42 |
41 1
|
sseqtrrdi |
|
| 43 |
38 42
|
sstrid |
|
| 44 |
43
|
sselda |
|
| 45 |
|
ax-1cn |
|
| 46 |
37 45
|
eqeltrdi |
|
| 47 |
|
nfcv |
|
| 48 |
|
nfv |
|
| 49 |
|
nfcsb1v |
|
| 50 |
|
nfcv |
|
| 51 |
48 49 50
|
nfif |
|
| 52 |
|
eleq1w |
|
| 53 |
|
csbeq1a |
|
| 54 |
52 53
|
ifbieq1d |
|
| 55 |
|
eqid |
|
| 56 |
47 51 54 55
|
fvmptf |
|
| 57 |
44 46 56
|
syl2anc |
|
| 58 |
|
elfzuz |
|
| 59 |
58
|
adantl |
|
| 60 |
|
1ex |
|
| 61 |
60
|
fvconst2 |
|
| 62 |
59 61
|
syl |
|
| 63 |
37 57 62
|
3eqtr4d |
|
| 64 |
17 63
|
seqfveq |
|
| 65 |
9
|
prodf1 |
|
| 66 |
65
|
adantl |
|
| 67 |
64 66
|
eqtrd |
|
| 68 |
9 13 15 16 67
|
climconst |
|
| 69 |
|
neeq1 |
|
| 70 |
|
breq2 |
|
| 71 |
69 70
|
anbi12d |
|
| 72 |
60 71
|
spcev |
|
| 73 |
8 68 72
|
sylancr |
|
| 74 |
|
seqeq1 |
|
| 75 |
74
|
breq1d |
|
| 76 |
75
|
anbi2d |
|
| 77 |
76
|
exbidv |
|
| 78 |
77
|
rspcev |
|
| 79 |
7 73 78
|
syl2anc |
|