Metamath Proof Explorer


Theorem fprodntriv

Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses fprodntriv.1 Z = M
fprodntriv.2 φ N Z
fprodntriv.3 φ A M N
Assertion fprodntriv φ n Z y y 0 seq n × k Z if k A B 1 y

Proof

Step Hyp Ref Expression
1 fprodntriv.1 Z = M
2 fprodntriv.2 φ N Z
3 fprodntriv.3 φ A M N
4 2 1 eleqtrdi φ N M
5 peano2uz N M N + 1 M
6 4 5 syl φ N + 1 M
7 6 1 eleqtrrdi φ N + 1 Z
8 ax-1ne0 1 0
9 eqid N + 1 = N + 1
10 eluzelz N M N
11 10 1 eleq2s N Z N
12 2 11 syl φ N
13 12 peano2zd φ N + 1
14 seqex seq N + 1 × k Z if k A B 1 V
15 14 a1i φ seq N + 1 × k Z if k A B 1 V
16 1cnd φ 1
17 simpr φ n N + 1 n N + 1
18 3 ad2antrr φ n N + 1 m N + 1 n A M N
19 12 ad2antrr φ n N + 1 m N + 1 n N
20 19 zred φ n N + 1 m N + 1 n N
21 19 peano2zd φ n N + 1 m N + 1 n N + 1
22 21 zred φ n N + 1 m N + 1 n N + 1
23 elfzelz m N + 1 n m
24 23 adantl φ n N + 1 m N + 1 n m
25 24 zred φ n N + 1 m N + 1 n m
26 20 ltp1d φ n N + 1 m N + 1 n N < N + 1
27 elfzle1 m N + 1 n N + 1 m
28 27 adantl φ n N + 1 m N + 1 n N + 1 m
29 20 22 25 26 28 ltletrd φ n N + 1 m N + 1 n N < m
30 20 25 ltnled φ n N + 1 m N + 1 n N < m ¬ m N
31 29 30 mpbid φ n N + 1 m N + 1 n ¬ m N
32 31 intnand φ n N + 1 m N + 1 n ¬ M m m N
33 32 intnand φ n N + 1 m N + 1 n ¬ M N m M m m N
34 elfz2 m M N M N m M m m N
35 33 34 sylnibr φ n N + 1 m N + 1 n ¬ m M N
36 18 35 ssneldd φ n N + 1 m N + 1 n ¬ m A
37 36 iffalsed φ n N + 1 m N + 1 n if m A m / k B 1 = 1
38 fzssuz N + 1 n N + 1
39 6 adantr φ n N + 1 N + 1 M
40 uzss N + 1 M N + 1 M
41 39 40 syl φ n N + 1 N + 1 M
42 41 1 sseqtrrdi φ n N + 1 N + 1 Z
43 38 42 sstrid φ n N + 1 N + 1 n Z
44 43 sselda φ n N + 1 m N + 1 n m Z
45 ax-1cn 1
46 37 45 eqeltrdi φ n N + 1 m N + 1 n if m A m / k B 1
47 nfcv _ k m
48 nfv k m A
49 nfcsb1v _ k m / k B
50 nfcv _ k 1
51 48 49 50 nfif _ k if m A m / k B 1
52 eleq1w k = m k A m A
53 csbeq1a k = m B = m / k B
54 52 53 ifbieq1d k = m if k A B 1 = if m A m / k B 1
55 eqid k Z if k A B 1 = k Z if k A B 1
56 47 51 54 55 fvmptf m Z if m A m / k B 1 k Z if k A B 1 m = if m A m / k B 1
57 44 46 56 syl2anc φ n N + 1 m N + 1 n k Z if k A B 1 m = if m A m / k B 1
58 elfzuz m N + 1 n m N + 1
59 58 adantl φ n N + 1 m N + 1 n m N + 1
60 1ex 1 V
61 60 fvconst2 m N + 1 N + 1 × 1 m = 1
62 59 61 syl φ n N + 1 m N + 1 n N + 1 × 1 m = 1
63 37 57 62 3eqtr4d φ n N + 1 m N + 1 n k Z if k A B 1 m = N + 1 × 1 m
64 17 63 seqfveq φ n N + 1 seq N + 1 × k Z if k A B 1 n = seq N + 1 × N + 1 × 1 n
65 9 prodf1 n N + 1 seq N + 1 × N + 1 × 1 n = 1
66 65 adantl φ n N + 1 seq N + 1 × N + 1 × 1 n = 1
67 64 66 eqtrd φ n N + 1 seq N + 1 × k Z if k A B 1 n = 1
68 9 13 15 16 67 climconst φ seq N + 1 × k Z if k A B 1 1
69 neeq1 y = 1 y 0 1 0
70 breq2 y = 1 seq N + 1 × k Z if k A B 1 y seq N + 1 × k Z if k A B 1 1
71 69 70 anbi12d y = 1 y 0 seq N + 1 × k Z if k A B 1 y 1 0 seq N + 1 × k Z if k A B 1 1
72 60 71 spcev 1 0 seq N + 1 × k Z if k A B 1 1 y y 0 seq N + 1 × k Z if k A B 1 y
73 8 68 72 sylancr φ y y 0 seq N + 1 × k Z if k A B 1 y
74 seqeq1 n = N + 1 seq n × k Z if k A B 1 = seq N + 1 × k Z if k A B 1
75 74 breq1d n = N + 1 seq n × k Z if k A B 1 y seq N + 1 × k Z if k A B 1 y
76 75 anbi2d n = N + 1 y 0 seq n × k Z if k A B 1 y y 0 seq N + 1 × k Z if k A B 1 y
77 76 exbidv n = N + 1 y y 0 seq n × k Z if k A B 1 y y y 0 seq N + 1 × k Z if k A B 1 y
78 77 rspcev N + 1 Z y y 0 seq N + 1 × k Z if k A B 1 y n Z y y 0 seq n × k Z if k A B 1 y
79 7 73 78 syl2anc φ n Z y y 0 seq n × k Z if k A B 1 y