Step |
Hyp |
Ref |
Expression |
1 |
|
fprodntriv.1 |
|
2 |
|
fprodntriv.2 |
|
3 |
|
fprodntriv.3 |
|
4 |
2 1
|
eleqtrdi |
|
5 |
|
peano2uz |
|
6 |
4 5
|
syl |
|
7 |
6 1
|
eleqtrrdi |
|
8 |
|
ax-1ne0 |
|
9 |
|
eqid |
|
10 |
|
eluzelz |
|
11 |
10 1
|
eleq2s |
|
12 |
2 11
|
syl |
|
13 |
12
|
peano2zd |
|
14 |
|
seqex |
|
15 |
14
|
a1i |
|
16 |
|
1cnd |
|
17 |
|
simpr |
|
18 |
3
|
ad2antrr |
|
19 |
12
|
ad2antrr |
|
20 |
19
|
zred |
|
21 |
19
|
peano2zd |
|
22 |
21
|
zred |
|
23 |
|
elfzelz |
|
24 |
23
|
adantl |
|
25 |
24
|
zred |
|
26 |
20
|
ltp1d |
|
27 |
|
elfzle1 |
|
28 |
27
|
adantl |
|
29 |
20 22 25 26 28
|
ltletrd |
|
30 |
20 25
|
ltnled |
|
31 |
29 30
|
mpbid |
|
32 |
31
|
intnand |
|
33 |
32
|
intnand |
|
34 |
|
elfz2 |
|
35 |
33 34
|
sylnibr |
|
36 |
18 35
|
ssneldd |
|
37 |
36
|
iffalsed |
|
38 |
|
fzssuz |
|
39 |
6
|
adantr |
|
40 |
|
uzss |
|
41 |
39 40
|
syl |
|
42 |
41 1
|
sseqtrrdi |
|
43 |
38 42
|
sstrid |
|
44 |
43
|
sselda |
|
45 |
|
ax-1cn |
|
46 |
37 45
|
eqeltrdi |
|
47 |
|
nfcv |
|
48 |
|
nfv |
|
49 |
|
nfcsb1v |
|
50 |
|
nfcv |
|
51 |
48 49 50
|
nfif |
|
52 |
|
eleq1w |
|
53 |
|
csbeq1a |
|
54 |
52 53
|
ifbieq1d |
|
55 |
|
eqid |
|
56 |
47 51 54 55
|
fvmptf |
|
57 |
44 46 56
|
syl2anc |
|
58 |
|
elfzuz |
|
59 |
58
|
adantl |
|
60 |
|
1ex |
|
61 |
60
|
fvconst2 |
|
62 |
59 61
|
syl |
|
63 |
37 57 62
|
3eqtr4d |
|
64 |
17 63
|
seqfveq |
|
65 |
9
|
prodf1 |
|
66 |
65
|
adantl |
|
67 |
64 66
|
eqtrd |
|
68 |
9 13 15 16 67
|
climconst |
|
69 |
|
neeq1 |
|
70 |
|
breq2 |
|
71 |
69 70
|
anbi12d |
|
72 |
60 71
|
spcev |
|
73 |
8 68 72
|
sylancr |
|
74 |
|
seqeq1 |
|
75 |
74
|
breq1d |
|
76 |
75
|
anbi2d |
|
77 |
76
|
exbidv |
|
78 |
77
|
rspcev |
|
79 |
7 73 78
|
syl2anc |
|