Metamath Proof Explorer


Theorem fprodp1

Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)

Ref Expression
Hypotheses fprodp1.1 φ N M
fprodp1.2 φ k M N + 1 A
fprodp1.3 k = N + 1 A = B
Assertion fprodp1 φ k = M N + 1 A = k = M N A B

Proof

Step Hyp Ref Expression
1 fprodp1.1 φ N M
2 fprodp1.2 φ k M N + 1 A
3 fprodp1.3 k = N + 1 A = B
4 peano2uz N M N + 1 M
5 1 4 syl φ N + 1 M
6 5 2 3 fprodm1 φ k = M N + 1 A = k = M N + 1 - 1 A B
7 eluzelz N M N
8 1 7 syl φ N
9 8 zcnd φ N
10 1cnd φ 1
11 9 10 pncand φ N + 1 - 1 = N
12 11 oveq2d φ M N + 1 - 1 = M N
13 12 prodeq1d φ k = M N + 1 - 1 A = k = M N A
14 13 oveq1d φ k = M N + 1 - 1 A B = k = M N A B
15 6 14 eqtrd φ k = M N + 1 A = k = M N A B