Step |
Hyp |
Ref |
Expression |
1 |
|
fprodshft.1 |
|
2 |
|
fprodshft.2 |
|
3 |
|
fprodshft.3 |
|
4 |
|
fprodshft.4 |
|
5 |
|
fprodrev.5 |
|
6 |
|
fzfid |
|
7 |
|
eqid |
|
8 |
1
|
adantr |
|
9 |
|
elfzelz |
|
10 |
9
|
adantl |
|
11 |
8 10
|
zsubcld |
|
12 |
1
|
adantr |
|
13 |
|
elfzelz |
|
14 |
13
|
adantl |
|
15 |
12 14
|
zsubcld |
|
16 |
|
simprr |
|
17 |
|
simprl |
|
18 |
2
|
adantr |
|
19 |
3
|
adantr |
|
20 |
1
|
adantr |
|
21 |
9
|
ad2antrl |
|
22 |
|
fzrev |
|
23 |
18 19 20 21 22
|
syl22anc |
|
24 |
17 23
|
mpbid |
|
25 |
16 24
|
eqeltrd |
|
26 |
|
oveq2 |
|
27 |
26
|
ad2antll |
|
28 |
1
|
zcnd |
|
29 |
28
|
adantr |
|
30 |
9
|
zcnd |
|
31 |
30
|
ad2antrl |
|
32 |
29 31
|
nncand |
|
33 |
27 32
|
eqtr2d |
|
34 |
25 33
|
jca |
|
35 |
|
simprr |
|
36 |
|
simprl |
|
37 |
2
|
adantr |
|
38 |
3
|
adantr |
|
39 |
1
|
adantr |
|
40 |
13
|
ad2antrl |
|
41 |
|
fzrev2 |
|
42 |
37 38 39 40 41
|
syl22anc |
|
43 |
36 42
|
mpbid |
|
44 |
35 43
|
eqeltrd |
|
45 |
|
oveq2 |
|
46 |
45
|
ad2antll |
|
47 |
28
|
adantr |
|
48 |
13
|
zcnd |
|
49 |
48
|
ad2antrl |
|
50 |
47 49
|
nncand |
|
51 |
46 50
|
eqtr2d |
|
52 |
44 51
|
jca |
|
53 |
34 52
|
impbida |
|
54 |
7 11 15 53
|
f1od |
|
55 |
|
oveq2 |
|
56 |
|
ovex |
|
57 |
55 7 56
|
fvmpt |
|
58 |
57
|
adantl |
|
59 |
5 6 54 58 4
|
fprodf1o |
|