Metamath Proof Explorer


Theorem fprodrev

Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses fprodshft.1 φ K
fprodshft.2 φ M
fprodshft.3 φ N
fprodshft.4 φ j M N A
fprodrev.5 j = K k A = B
Assertion fprodrev φ j = M N A = k = K N K M B

Proof

Step Hyp Ref Expression
1 fprodshft.1 φ K
2 fprodshft.2 φ M
3 fprodshft.3 φ N
4 fprodshft.4 φ j M N A
5 fprodrev.5 j = K k A = B
6 fzfid φ K N K M Fin
7 eqid j K N K M K j = j K N K M K j
8 1 adantr φ j K N K M K
9 elfzelz j K N K M j
10 9 adantl φ j K N K M j
11 8 10 zsubcld φ j K N K M K j
12 1 adantr φ k M N K
13 elfzelz k M N k
14 13 adantl φ k M N k
15 12 14 zsubcld φ k M N K k
16 simprr φ j K N K M k = K j k = K j
17 simprl φ j K N K M k = K j j K N K M
18 2 adantr φ j K N K M k = K j M
19 3 adantr φ j K N K M k = K j N
20 1 adantr φ j K N K M k = K j K
21 9 ad2antrl φ j K N K M k = K j j
22 fzrev M N K j j K N K M K j M N
23 18 19 20 21 22 syl22anc φ j K N K M k = K j j K N K M K j M N
24 17 23 mpbid φ j K N K M k = K j K j M N
25 16 24 eqeltrd φ j K N K M k = K j k M N
26 oveq2 k = K j K k = K K j
27 26 ad2antll φ j K N K M k = K j K k = K K j
28 1 zcnd φ K
29 28 adantr φ j K N K M k = K j K
30 9 zcnd j K N K M j
31 30 ad2antrl φ j K N K M k = K j j
32 29 31 nncand φ j K N K M k = K j K K j = j
33 27 32 eqtr2d φ j K N K M k = K j j = K k
34 25 33 jca φ j K N K M k = K j k M N j = K k
35 simprr φ k M N j = K k j = K k
36 simprl φ k M N j = K k k M N
37 2 adantr φ k M N j = K k M
38 3 adantr φ k M N j = K k N
39 1 adantr φ k M N j = K k K
40 13 ad2antrl φ k M N j = K k k
41 fzrev2 M N K k k M N K k K N K M
42 37 38 39 40 41 syl22anc φ k M N j = K k k M N K k K N K M
43 36 42 mpbid φ k M N j = K k K k K N K M
44 35 43 eqeltrd φ k M N j = K k j K N K M
45 oveq2 j = K k K j = K K k
46 45 ad2antll φ k M N j = K k K j = K K k
47 28 adantr φ k M N j = K k K
48 13 zcnd k M N k
49 48 ad2antrl φ k M N j = K k k
50 47 49 nncand φ k M N j = K k K K k = k
51 46 50 eqtr2d φ k M N j = K k k = K j
52 44 51 jca φ k M N j = K k j K N K M k = K j
53 34 52 impbida φ j K N K M k = K j k M N j = K k
54 7 11 15 53 f1od φ j K N K M K j : K N K M 1-1 onto M N
55 oveq2 j = k K j = K k
56 ovex K k V
57 55 7 56 fvmpt k K N K M j K N K M K j k = K k
58 57 adantl φ k K N K M j K N K M K j k = K k
59 5 6 54 58 4 fprodf1o φ j = M N A = k = K N K M B