Metamath Proof Explorer


Theorem fprodrpcl

Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 φ A Fin
fprodrpcl.2 φ k A B +
Assertion fprodrpcl φ k A B +

Proof

Step Hyp Ref Expression
1 fprodcl.1 φ A Fin
2 fprodrpcl.2 φ k A B +
3 rpssre +
4 ax-resscn
5 3 4 sstri +
6 5 a1i φ +
7 rpmulcl x + y + x y +
8 7 adantl φ x + y + x y +
9 1rp 1 +
10 9 a1i φ 1 +
11 6 8 1 2 10 fprodcllem φ k A B +