Metamath Proof Explorer


Theorem fprodshft

Description: Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses fprodshft.1 φ K
fprodshft.2 φ M
fprodshft.3 φ N
fprodshft.4 φ j M N A
fprodshft.5 j = k K A = B
Assertion fprodshft φ j = M N A = k = M + K N + K B

Proof

Step Hyp Ref Expression
1 fprodshft.1 φ K
2 fprodshft.2 φ M
3 fprodshft.3 φ N
4 fprodshft.4 φ j M N A
5 fprodshft.5 j = k K A = B
6 fzfid φ M + K N + K Fin
7 1 2 3 mptfzshft φ j M + K N + K j K : M + K N + K 1-1 onto M N
8 oveq1 j = k j K = k K
9 eqid j M + K N + K j K = j M + K N + K j K
10 ovex k K V
11 8 9 10 fvmpt k M + K N + K j M + K N + K j K k = k K
12 11 adantl φ k M + K N + K j M + K N + K j K k = k K
13 5 6 7 12 4 fprodf1o φ j = M N A = k = M + K N + K B