Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprodshft
Next ⟩
fprodrev
Metamath Proof Explorer
Ascii
Unicode
Theorem
fprodshft
Description:
Shift the index of a finite product.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Hypotheses
fprodshft.1
⊢
φ
→
K
∈
ℤ
fprodshft.2
⊢
φ
→
M
∈
ℤ
fprodshft.3
⊢
φ
→
N
∈
ℤ
fprodshft.4
⊢
φ
∧
j
∈
M
…
N
→
A
∈
ℂ
fprodshft.5
⊢
j
=
k
−
K
→
A
=
B
Assertion
fprodshft
⊢
φ
→
∏
j
=
M
N
A
=
∏
k
=
M
+
K
N
+
K
B
Proof
Step
Hyp
Ref
Expression
1
fprodshft.1
⊢
φ
→
K
∈
ℤ
2
fprodshft.2
⊢
φ
→
M
∈
ℤ
3
fprodshft.3
⊢
φ
→
N
∈
ℤ
4
fprodshft.4
⊢
φ
∧
j
∈
M
…
N
→
A
∈
ℂ
5
fprodshft.5
⊢
j
=
k
−
K
→
A
=
B
6
fzfid
⊢
φ
→
M
+
K
…
N
+
K
∈
Fin
7
1
2
3
mptfzshft
⊢
φ
→
j
∈
M
+
K
…
N
+
K
⟼
j
−
K
:
M
+
K
…
N
+
K
⟶
1-1 onto
M
…
N
8
oveq1
⊢
j
=
k
→
j
−
K
=
k
−
K
9
eqid
⊢
j
∈
M
+
K
…
N
+
K
⟼
j
−
K
=
j
∈
M
+
K
…
N
+
K
⟼
j
−
K
10
ovex
⊢
k
−
K
∈
V
11
8
9
10
fvmpt
⊢
k
∈
M
+
K
…
N
+
K
→
j
∈
M
+
K
…
N
+
K
⟼
j
−
K
⁡
k
=
k
−
K
12
11
adantl
⊢
φ
∧
k
∈
M
+
K
…
N
+
K
→
j
∈
M
+
K
…
N
+
K
⟼
j
−
K
⁡
k
=
k
−
K
13
5
6
7
12
4
fprodf1o
⊢
φ
→
∏
j
=
M
N
A
=
∏
k
=
M
+
K
N
+
K
B