| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodsplit.1 |
|
| 2 |
|
fprodsplit.2 |
|
| 3 |
|
fprodsplit.3 |
|
| 4 |
|
fprodsplit.4 |
|
| 5 |
|
iftrue |
|
| 6 |
5
|
prodeq2i |
|
| 7 |
|
ssun1 |
|
| 8 |
7 2
|
sseqtrrid |
|
| 9 |
5
|
adantl |
|
| 10 |
8
|
sselda |
|
| 11 |
10 4
|
syldan |
|
| 12 |
9 11
|
eqeltrd |
|
| 13 |
|
eldifn |
|
| 14 |
13
|
iffalsed |
|
| 15 |
14
|
adantl |
|
| 16 |
8 12 15 3
|
fprodss |
|
| 17 |
6 16
|
eqtr3id |
|
| 18 |
|
iftrue |
|
| 19 |
18
|
prodeq2i |
|
| 20 |
|
ssun2 |
|
| 21 |
20 2
|
sseqtrrid |
|
| 22 |
18
|
adantl |
|
| 23 |
21
|
sselda |
|
| 24 |
23 4
|
syldan |
|
| 25 |
22 24
|
eqeltrd |
|
| 26 |
|
eldifn |
|
| 27 |
26
|
iffalsed |
|
| 28 |
27
|
adantl |
|
| 29 |
21 25 28 3
|
fprodss |
|
| 30 |
19 29
|
eqtr3id |
|
| 31 |
17 30
|
oveq12d |
|
| 32 |
|
ax-1cn |
|
| 33 |
|
ifcl |
|
| 34 |
4 32 33
|
sylancl |
|
| 35 |
|
ifcl |
|
| 36 |
4 32 35
|
sylancl |
|
| 37 |
3 34 36
|
fprodmul |
|
| 38 |
2
|
eleq2d |
|
| 39 |
|
elun |
|
| 40 |
38 39
|
bitrdi |
|
| 41 |
40
|
biimpa |
|
| 42 |
|
disjel |
|
| 43 |
1 42
|
sylan |
|
| 44 |
43
|
iffalsed |
|
| 45 |
9 44
|
oveq12d |
|
| 46 |
11
|
mulridd |
|
| 47 |
45 46
|
eqtrd |
|
| 48 |
43
|
ex |
|
| 49 |
48
|
con2d |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
iffalsed |
|
| 52 |
51 22
|
oveq12d |
|
| 53 |
24
|
mullidd |
|
| 54 |
52 53
|
eqtrd |
|
| 55 |
47 54
|
jaodan |
|
| 56 |
41 55
|
syldan |
|
| 57 |
56
|
prodeq2dv |
|
| 58 |
31 37 57
|
3eqtr2rd |
|