Metamath Proof Explorer


Theorem fprodsplit1

Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplit1.a φ A Fin
fprodsplit1.b φ k A B
fprodsplit1.c φ C A
fprodsplit1.d φ k = C B = D
Assertion fprodsplit1 φ k A B = D k A C B

Proof

Step Hyp Ref Expression
1 fprodsplit1.a φ A Fin
2 fprodsplit1.b φ k A B
3 fprodsplit1.c φ C A
4 fprodsplit1.d φ k = C B = D
5 nfv k φ
6 nfcvd φ _ k D
7 5 6 1 2 3 4 fprodsplit1f φ k A B = D k A C B