Metamath Proof Explorer


Theorem fprodsplit1f

Description: Separate out a term in a finite product. A version of fprodsplit1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplit1f.kph k φ
fprodsplit1f.fk φ _ k D
fprodsplit1f.a φ A Fin
fprodsplit1f.b φ k A B
fprodsplit1f.c φ C A
fprodsplit1f.d φ k = C B = D
Assertion fprodsplit1f φ k A B = D k A C B

Proof

Step Hyp Ref Expression
1 fprodsplit1f.kph k φ
2 fprodsplit1f.fk φ _ k D
3 fprodsplit1f.a φ A Fin
4 fprodsplit1f.b φ k A B
5 fprodsplit1f.c φ C A
6 fprodsplit1f.d φ k = C B = D
7 disjdif C A C =
8 7 a1i φ C A C =
9 5 snssd φ C A
10 undif C A C A C = A
11 9 10 sylib φ C A C = A
12 11 eqcomd φ A = C A C
13 1 8 12 3 4 fprodsplitf φ k A B = k C B k A C B
14 5 ancli φ φ C A
15 nfv k C A
16 1 15 nfan k φ C A
17 nfcsb1v _ k C / k B
18 17 nfel1 k C / k B
19 16 18 nfim k φ C A C / k B
20 eleq1 k = C k A C A
21 20 anbi2d k = C φ k A φ C A
22 csbeq1a k = C B = C / k B
23 22 eleq1d k = C B C / k B
24 21 23 imbi12d k = C φ k A B φ C A C / k B
25 19 24 4 vtoclg1f C A φ C A C / k B
26 5 14 25 sylc φ C / k B
27 prodsns C A C / k B k C B = C / k B
28 5 26 27 syl2anc φ k C B = C / k B
29 1 2 5 6 csbiedf φ C / k B = D
30 28 29 eqtrd φ k C B = D
31 30 oveq1d φ k C B k A C B = D k A C B
32 13 31 eqtrd φ k A B = D k A C B