Metamath Proof Explorer


Theorem fprodsplitf

Description: Split a finite product into two parts. A version of fprodsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplitf.kph k φ
fprodsplitf.in φ A B =
fprodsplitf.un φ U = A B
fprodsplitf.fi φ U Fin
fprodsplitf.c φ k U C
Assertion fprodsplitf φ k U C = k A C k B C

Proof

Step Hyp Ref Expression
1 fprodsplitf.kph k φ
2 fprodsplitf.in φ A B =
3 fprodsplitf.un φ U = A B
4 fprodsplitf.fi φ U Fin
5 fprodsplitf.c φ k U C
6 nfv k j U
7 1 6 nfan k φ j U
8 nfcsb1v _ k j / k C
9 8 nfel1 k j / k C
10 7 9 nfim k φ j U j / k C
11 eleq1w k = j k U j U
12 11 anbi2d k = j φ k U φ j U
13 csbeq1a k = j C = j / k C
14 13 eleq1d k = j C j / k C
15 12 14 imbi12d k = j φ k U C φ j U j / k C
16 10 15 5 chvarfv φ j U j / k C
17 2 3 4 16 fprodsplit φ j U j / k C = j A j / k C j B j / k C
18 nfcv _ j C
19 18 8 13 cbvprodi k U C = j U j / k C
20 18 8 13 cbvprodi k A C = j A j / k C
21 18 8 13 cbvprodi k B C = j B j / k C
22 20 21 oveq12i k A C k B C = j A j / k C j B j / k C
23 17 19 22 3eqtr4g φ k U C = k A C k B C