Step |
Hyp |
Ref |
Expression |
1 |
|
fpropnf1.f |
|
2 |
|
id |
|
3 |
2
|
3adant3 |
|
4 |
3
|
adantr |
|
5 |
|
id |
|
6 |
5 5
|
jca |
|
7 |
6
|
3ad2ant3 |
|
8 |
7
|
adantr |
|
9 |
|
simpr |
|
10 |
4 8 9
|
3jca |
|
11 |
|
funprg |
|
12 |
10 11
|
syl |
|
13 |
1
|
funeqi |
|
14 |
12 13
|
sylibr |
|
15 |
|
neneq |
|
16 |
15
|
adantl |
|
17 |
|
fprg |
|
18 |
10 17
|
syl |
|
19 |
1
|
eqcomi |
|
20 |
19
|
feq1i |
|
21 |
18 20
|
sylib |
|
22 |
|
df-f1 |
|
23 |
|
dff13 |
|
24 |
|
fveqeq2 |
|
25 |
|
eqeq1 |
|
26 |
24 25
|
imbi12d |
|
27 |
26
|
ralbidv |
|
28 |
|
fveqeq2 |
|
29 |
|
eqeq1 |
|
30 |
28 29
|
imbi12d |
|
31 |
30
|
ralbidv |
|
32 |
27 31
|
ralprg |
|
33 |
32
|
3adant3 |
|
34 |
33
|
adantr |
|
35 |
|
fveq2 |
|
36 |
35
|
eqeq2d |
|
37 |
|
eqeq2 |
|
38 |
36 37
|
imbi12d |
|
39 |
|
fveq2 |
|
40 |
39
|
eqeq2d |
|
41 |
|
eqeq2 |
|
42 |
40 41
|
imbi12d |
|
43 |
38 42
|
ralprg |
|
44 |
35
|
eqeq2d |
|
45 |
|
eqeq2 |
|
46 |
44 45
|
imbi12d |
|
47 |
39
|
eqeq2d |
|
48 |
|
eqeq2 |
|
49 |
47 48
|
imbi12d |
|
50 |
46 49
|
ralprg |
|
51 |
43 50
|
anbi12d |
|
52 |
51
|
3adant3 |
|
53 |
52
|
adantr |
|
54 |
1
|
fveq1i |
|
55 |
|
3simpb |
|
56 |
55
|
anim1i |
|
57 |
|
df-3an |
|
58 |
56 57
|
sylibr |
|
59 |
|
fvpr1g |
|
60 |
58 59
|
syl |
|
61 |
54 60
|
eqtrid |
|
62 |
1
|
fveq1i |
|
63 |
|
3simpc |
|
64 |
63
|
anim1i |
|
65 |
|
df-3an |
|
66 |
64 65
|
sylibr |
|
67 |
|
fvpr2g |
|
68 |
66 67
|
syl |
|
69 |
62 68
|
eqtr2id |
|
70 |
61 69
|
eqtrd |
|
71 |
|
idd |
|
72 |
70 71
|
embantd |
|
73 |
72
|
adantld |
|
74 |
73
|
adantrd |
|
75 |
53 74
|
sylbid |
|
76 |
34 75
|
sylbid |
|
77 |
76
|
adantld |
|
78 |
23 77
|
syl5bi |
|
79 |
22 78
|
syl5bir |
|
80 |
21 79
|
mpand |
|
81 |
16 80
|
mtod |
|
82 |
14 81
|
jca |
|