| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpropnf1.f |
|
| 2 |
|
id |
|
| 3 |
2
|
3adant3 |
|
| 4 |
3
|
adantr |
|
| 5 |
|
id |
|
| 6 |
5 5
|
jca |
|
| 7 |
6
|
3ad2ant3 |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simpr |
|
| 10 |
4 8 9
|
3jca |
|
| 11 |
|
funprg |
|
| 12 |
10 11
|
syl |
|
| 13 |
1
|
funeqi |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
|
neneq |
|
| 16 |
15
|
adantl |
|
| 17 |
|
fprg |
|
| 18 |
10 17
|
syl |
|
| 19 |
1
|
eqcomi |
|
| 20 |
19
|
feq1i |
|
| 21 |
18 20
|
sylib |
|
| 22 |
|
df-f1 |
|
| 23 |
|
dff13 |
|
| 24 |
|
fveqeq2 |
|
| 25 |
|
eqeq1 |
|
| 26 |
24 25
|
imbi12d |
|
| 27 |
26
|
ralbidv |
|
| 28 |
|
fveqeq2 |
|
| 29 |
|
eqeq1 |
|
| 30 |
28 29
|
imbi12d |
|
| 31 |
30
|
ralbidv |
|
| 32 |
27 31
|
ralprg |
|
| 33 |
32
|
3adant3 |
|
| 34 |
33
|
adantr |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
|
eqeq2 |
|
| 38 |
36 37
|
imbi12d |
|
| 39 |
|
fveq2 |
|
| 40 |
39
|
eqeq2d |
|
| 41 |
|
eqeq2 |
|
| 42 |
40 41
|
imbi12d |
|
| 43 |
38 42
|
ralprg |
|
| 44 |
35
|
eqeq2d |
|
| 45 |
|
eqeq2 |
|
| 46 |
44 45
|
imbi12d |
|
| 47 |
39
|
eqeq2d |
|
| 48 |
|
eqeq2 |
|
| 49 |
47 48
|
imbi12d |
|
| 50 |
46 49
|
ralprg |
|
| 51 |
43 50
|
anbi12d |
|
| 52 |
51
|
3adant3 |
|
| 53 |
52
|
adantr |
|
| 54 |
1
|
fveq1i |
|
| 55 |
|
3simpb |
|
| 56 |
55
|
anim1i |
|
| 57 |
|
df-3an |
|
| 58 |
56 57
|
sylibr |
|
| 59 |
|
fvpr1g |
|
| 60 |
58 59
|
syl |
|
| 61 |
54 60
|
eqtrid |
|
| 62 |
1
|
fveq1i |
|
| 63 |
|
3simpc |
|
| 64 |
63
|
anim1i |
|
| 65 |
|
df-3an |
|
| 66 |
64 65
|
sylibr |
|
| 67 |
|
fvpr2g |
|
| 68 |
66 67
|
syl |
|
| 69 |
62 68
|
eqtr2id |
|
| 70 |
61 69
|
eqtrd |
|
| 71 |
|
idd |
|
| 72 |
70 71
|
embantd |
|
| 73 |
72
|
adantld |
|
| 74 |
73
|
adantrd |
|
| 75 |
53 74
|
sylbid |
|
| 76 |
34 75
|
sylbid |
|
| 77 |
76
|
adantld |
|
| 78 |
23 77
|
biimtrid |
|
| 79 |
22 78
|
biimtrrid |
|
| 80 |
21 79
|
mpand |
|
| 81 |
16 80
|
mtod |
|
| 82 |
14 81
|
jca |
|