Step |
Hyp |
Ref |
Expression |
1 |
|
fpwrelmapffslem.1 |
|
2 |
|
fpwrelmapffslem.2 |
|
3 |
|
fpwrelmapffslem.3 |
|
4 |
|
fpwrelmapffslem.4 |
|
5 |
|
relopabv |
|
6 |
|
releq |
|
7 |
5 6
|
mpbiri |
|
8 |
|
relfi |
|
9 |
4 7 8
|
3syl |
|
10 |
|
rexcom4 |
|
11 |
|
ancom |
|
12 |
11
|
exbii |
|
13 |
|
fvex |
|
14 |
|
eleq2 |
|
15 |
13 14
|
ceqsexv |
|
16 |
12 15
|
bitr3i |
|
17 |
16
|
rexbii |
|
18 |
|
r19.42v |
|
19 |
18
|
exbii |
|
20 |
10 17 19
|
3bitr3ri |
|
21 |
|
df-rex |
|
22 |
20 21
|
bitr2i |
|
23 |
22
|
a1i |
|
24 |
|
vex |
|
25 |
|
eleq1w |
|
26 |
25
|
anbi2d |
|
27 |
26
|
exbidv |
|
28 |
24 27
|
elab |
|
29 |
|
eluniab |
|
30 |
23 28 29
|
3bitr4g |
|
31 |
30
|
eqrdv |
|
32 |
31
|
eleq1d |
|
33 |
32
|
adantr |
|
34 |
|
ffn |
|
35 |
|
fnrnfv |
|
36 |
3 34 35
|
3syl |
|
37 |
36
|
adantr |
|
38 |
|
0ex |
|
39 |
38
|
a1i |
|
40 |
|
fex |
|
41 |
3 1 40
|
sylancl |
|
42 |
41
|
adantr |
|
43 |
3
|
ffund |
|
44 |
43
|
adantr |
|
45 |
|
opabdm |
|
46 |
4 45
|
syl |
|
47 |
1 40
|
mpan2 |
|
48 |
|
suppimacnv |
|
49 |
38 48
|
mpan2 |
|
50 |
3 47 49
|
3syl |
|
51 |
3
|
feqmptd |
|
52 |
51
|
cnveqd |
|
53 |
52
|
imaeq1d |
|
54 |
50 53
|
eqtrd |
|
55 |
|
eqid |
|
56 |
55
|
mptpreima |
|
57 |
54 56
|
eqtrdi |
|
58 |
|
suppvalfn |
|
59 |
1 38 58
|
mp3an23 |
|
60 |
3 34 59
|
3syl |
|
61 |
|
n0 |
|
62 |
61
|
rabbii |
|
63 |
62
|
a1i |
|
64 |
60 57 63
|
3eqtr3d |
|
65 |
|
df-rab |
|
66 |
|
19.42v |
|
67 |
66
|
abbii |
|
68 |
65 67
|
eqtr4i |
|
69 |
68
|
a1i |
|
70 |
57 64 69
|
3eqtrd |
|
71 |
46 70
|
eqtr4d |
|
72 |
71
|
eleq1d |
|
73 |
72
|
biimpa |
|
74 |
39 42 44 73
|
ffsrn |
|
75 |
37 74
|
eqeltrrd |
|
76 |
|
unifi |
|
77 |
76
|
ex |
|
78 |
75 77
|
syl |
|
79 |
|
unifi3 |
|
80 |
78 79
|
impbid1 |
|
81 |
33 80
|
bitr4d |
|
82 |
|
opabrn |
|
83 |
4 82
|
syl |
|
84 |
83
|
eleq1d |
|
85 |
84
|
adantr |
|
86 |
37
|
sseq1d |
|
87 |
81 85 86
|
3bitr4d |
|
88 |
87
|
pm5.32da |
|
89 |
72
|
anbi1d |
|
90 |
88 89
|
bitrd |
|
91 |
|
ancom |
|
92 |
91
|
a1i |
|
93 |
9 90 92
|
3bitrd |
|