| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwwe2.1 |
|
| 2 |
|
fpwwe2.2 |
|
| 3 |
|
fpwwe2.3 |
|
| 4 |
|
fpwwe2.4 |
|
| 5 |
1 2 3 4
|
fpwwe2lem10 |
|
| 6 |
5
|
ffund |
|
| 7 |
|
funbrfv2b |
|
| 8 |
6 7
|
syl |
|
| 9 |
8
|
simprbda |
|
| 10 |
9
|
adantrr |
|
| 11 |
|
elssuni |
|
| 12 |
11 4
|
sseqtrrdi |
|
| 13 |
10 12
|
syl |
|
| 14 |
|
simpl |
|
| 15 |
14
|
a1i |
|
| 16 |
|
simplrr |
|
| 17 |
2
|
adantr |
|
| 18 |
17
|
adantr |
|
| 19 |
1 2 3 4
|
fpwwe2lem11 |
|
| 20 |
|
funfvbrb |
|
| 21 |
6 20
|
syl |
|
| 22 |
19 21
|
mpbid |
|
| 23 |
1 2
|
fpwwe2lem2 |
|
| 24 |
22 23
|
mpbid |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
25
|
simpld |
|
| 27 |
26
|
simpld |
|
| 28 |
18 27
|
ssexd |
|
| 29 |
28
|
difexd |
|
| 30 |
25
|
simprd |
|
| 31 |
30
|
simpld |
|
| 32 |
|
wefr |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
difssd |
|
| 35 |
|
fri |
|
| 36 |
35
|
expr |
|
| 37 |
29 33 34 36
|
syl21anc |
|
| 38 |
|
ssdif0 |
|
| 39 |
|
indif1 |
|
| 40 |
39
|
eqeq1i |
|
| 41 |
|
disj |
|
| 42 |
|
vex |
|
| 43 |
42
|
eliniseg |
|
| 44 |
43
|
elv |
|
| 45 |
44
|
notbii |
|
| 46 |
45
|
ralbii |
|
| 47 |
41 46
|
bitri |
|
| 48 |
38 40 47
|
3bitr2i |
|
| 49 |
|
cnvimass |
|
| 50 |
26
|
simprd |
|
| 51 |
|
dmss |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
dmxpid |
|
| 54 |
52 53
|
sseqtrdi |
|
| 55 |
49 54
|
sstrid |
|
| 56 |
|
sseqin2 |
|
| 57 |
55 56
|
sylib |
|
| 58 |
57
|
sseq1d |
|
| 59 |
48 58
|
bitr3id |
|
| 60 |
59
|
rexbidv |
|
| 61 |
|
eldifn |
|
| 62 |
61
|
ad2antrl |
|
| 63 |
|
eleq1w |
|
| 64 |
63
|
notbid |
|
| 65 |
62 64
|
syl5ibrcom |
|
| 66 |
65
|
con2d |
|
| 67 |
66
|
imp |
|
| 68 |
62
|
adantr |
|
| 69 |
|
simprr |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
70
|
breqd |
|
| 72 |
|
eldifi |
|
| 73 |
72
|
ad2antrl |
|
| 74 |
73
|
adantr |
|
| 75 |
|
simpr |
|
| 76 |
|
brxp |
|
| 77 |
74 75 76
|
sylanbrc |
|
| 78 |
|
brin |
|
| 79 |
78
|
rbaib |
|
| 80 |
77 79
|
syl |
|
| 81 |
71 80
|
bitrd |
|
| 82 |
1 2
|
fpwwe2lem2 |
|
| 83 |
82
|
biimpa |
|
| 84 |
83
|
adantrr |
|
| 85 |
84
|
simpld |
|
| 86 |
85
|
simprd |
|
| 87 |
86
|
ad3antrrr |
|
| 88 |
87
|
ssbrd |
|
| 89 |
|
brxp |
|
| 90 |
89
|
simplbi |
|
| 91 |
88 90
|
syl6 |
|
| 92 |
81 91
|
sylbird |
|
| 93 |
68 92
|
mtod |
|
| 94 |
31
|
ad2antrr |
|
| 95 |
|
weso |
|
| 96 |
94 95
|
syl |
|
| 97 |
13
|
ad2antrr |
|
| 98 |
97
|
sselda |
|
| 99 |
|
sotric |
|
| 100 |
|
ioran |
|
| 101 |
99 100
|
bitrdi |
|
| 102 |
96 98 74 101
|
syl12anc |
|
| 103 |
67 93 102
|
mpbir2and |
|
| 104 |
103 44
|
sylibr |
|
| 105 |
104
|
ex |
|
| 106 |
105
|
ssrdv |
|
| 107 |
|
simprr |
|
| 108 |
106 107
|
eqssd |
|
| 109 |
|
in32 |
|
| 110 |
|
simplrr |
|
| 111 |
110
|
ineq1d |
|
| 112 |
86
|
ad2antrr |
|
| 113 |
|
dfss2 |
|
| 114 |
112 113
|
sylib |
|
| 115 |
111 114
|
eqtr3d |
|
| 116 |
|
inss2 |
|
| 117 |
|
xpss1 |
|
| 118 |
97 117
|
syl |
|
| 119 |
116 118
|
sstrid |
|
| 120 |
|
dfss2 |
|
| 121 |
119 120
|
sylib |
|
| 122 |
109 115 121
|
3eqtr3a |
|
| 123 |
108
|
sqxpeqd |
|
| 124 |
123
|
ineq2d |
|
| 125 |
122 124
|
eqtrd |
|
| 126 |
108 125
|
oveq12d |
|
| 127 |
18
|
adantr |
|
| 128 |
22
|
adantr |
|
| 129 |
128
|
ad2antrr |
|
| 130 |
1 127 129
|
fpwwe2lem3 |
|
| 131 |
73 130
|
mpdan |
|
| 132 |
126 131
|
eqtrd |
|
| 133 |
132 62
|
eqneltrd |
|
| 134 |
133
|
rexlimdvaa |
|
| 135 |
60 134
|
sylbid |
|
| 136 |
37 135
|
syld |
|
| 137 |
136
|
necon4ad |
|
| 138 |
16 137
|
mpd |
|
| 139 |
|
ssdif0 |
|
| 140 |
138 139
|
sylibr |
|
| 141 |
140
|
ex |
|
| 142 |
3
|
adantlr |
|
| 143 |
|
simprl |
|
| 144 |
1 17 142 128 143
|
fpwwe2lem9 |
|
| 145 |
15 141 144
|
mpjaod |
|
| 146 |
13 145
|
eqssd |
|
| 147 |
6
|
adantr |
|
| 148 |
146 143
|
eqbrtrrd |
|
| 149 |
|
funbrfv |
|
| 150 |
147 148 149
|
sylc |
|
| 151 |
150
|
eqcomd |
|
| 152 |
146 151
|
jca |
|
| 153 |
152
|
ex |
|
| 154 |
1 2 3 4
|
fpwwe2lem12 |
|
| 155 |
22 154
|
jca |
|
| 156 |
|
breq12 |
|
| 157 |
|
oveq12 |
|
| 158 |
|
simpl |
|
| 159 |
157 158
|
eleq12d |
|
| 160 |
156 159
|
anbi12d |
|
| 161 |
155 160
|
syl5ibrcom |
|
| 162 |
153 161
|
impbid |
|