Metamath Proof Explorer


Theorem fpwwe2cbv

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 3-Jun-2015)

Ref Expression
Hypothesis fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
Assertion fpwwe2cbv W = a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v F s v × v = z

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
2 simpl x = a r = s x = a
3 2 sseq1d x = a r = s x A a A
4 simpr x = a r = s r = s
5 2 sqxpeqd x = a r = s x × x = a × a
6 4 5 sseq12d x = a r = s r x × x s a × a
7 3 6 anbi12d x = a r = s x A r x × x a A s a × a
8 weeq2 x = a r We x r We a
9 weeq1 r = s r We a s We a
10 8 9 sylan9bb x = a r = s r We x s We a
11 id u = v u = v
12 11 sqxpeqd u = v u × u = v × v
13 12 ineq2d u = v r u × u = r v × v
14 11 13 oveq12d u = v u F r u × u = v F r v × v
15 14 eqeq1d u = v u F r u × u = y v F r v × v = y
16 15 cbvsbcvw [˙ r -1 y / u]˙ u F r u × u = y [˙ r -1 y / v]˙ v F r v × v = y
17 sneq y = z y = z
18 17 imaeq2d y = z r -1 y = r -1 z
19 eqeq2 y = z v F r v × v = y v F r v × v = z
20 18 19 sbceqbid y = z [˙ r -1 y / v]˙ v F r v × v = y [˙ r -1 z / v]˙ v F r v × v = z
21 16 20 syl5bb y = z [˙ r -1 y / u]˙ u F r u × u = y [˙ r -1 z / v]˙ v F r v × v = z
22 21 cbvralvw y x [˙ r -1 y / u]˙ u F r u × u = y z x [˙ r -1 z / v]˙ v F r v × v = z
23 4 cnveqd x = a r = s r -1 = s -1
24 23 imaeq1d x = a r = s r -1 z = s -1 z
25 4 ineq1d x = a r = s r v × v = s v × v
26 25 oveq2d x = a r = s v F r v × v = v F s v × v
27 26 eqeq1d x = a r = s v F r v × v = z v F s v × v = z
28 24 27 sbceqbid x = a r = s [˙ r -1 z / v]˙ v F r v × v = z [˙ s -1 z / v]˙ v F s v × v = z
29 2 28 raleqbidv x = a r = s z x [˙ r -1 z / v]˙ v F r v × v = z z a [˙ s -1 z / v]˙ v F s v × v = z
30 22 29 syl5bb x = a r = s y x [˙ r -1 y / u]˙ u F r u × u = y z a [˙ s -1 z / v]˙ v F s v × v = z
31 10 30 anbi12d x = a r = s r We x y x [˙ r -1 y / u]˙ u F r u × u = y s We a z a [˙ s -1 z / v]˙ v F s v × v = z
32 7 31 anbi12d x = a r = s x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y a A s a × a s We a z a [˙ s -1 z / v]˙ v F s v × v = z
33 32 cbvopabv x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y = a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v F s v × v = z
34 1 33 eqtri W = a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v F s v × v = z